Skip to main content
Log in

Properties of stem cells isolated from subcutaneous and subepicardial adipose tissues

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Stem cells (SCs) vary in morphological, immunophenotypic, proliferative, and differentiation characteristics depending on their tissue source. Comparative analysis of their biological properties is essential for making an optimal SC choice for regenerative therapy. Using immunocytochemistry, flow cytometry, histochemistry, and RT-PCR, we have investigated SCs obtained from human subepicardial (SEC-AT) and subcutaneous (SC-AT) adipose tissues and cultured under similar conditions without any differentiation-promoting factors. The cultures were similar in having a high proportion of proliferating cells positive for nuclear antigen (PCNA). In both cultures, immunophenotyping has revealed high expression of mesenchymal stem-cell surface markers CD29, CD44, CD73, and CD105; low expression of CD31, CD34, and CD45; and variability in CD117, CD146, and CD309 expression. The only difference in the CD marker profile was the significantly lower expression of CD90 in the culture of SCs from SC-AT than from SEC-AT. Histochemical analysis showed a lack of Oil Red O-positive cells in both cultures and an about ten times higher number of alkaline phosphatase-positive cells among SCs from SC-AT. In both cultures, immunocytochemistry detected low expression of the slow myosin heavy chain marker MAB1628 and smooth muscle actin marker α-hSMA. Expression of the gap junction protein connexin-43 was markedly higher in cells from SC-AT cultures. Only the cells of these cultures expressed the epithelial cell marker cytokeratin-19. GATA4 mRNA expression detected with RT-PCR was identified in SEC-AT rather than in SC-AT cells. Our results suggest that SC-AT is enriched compared to SEC-AT with epithelial cell and osteogenic progenitors. In turn, SEC-AT possesses cardiomyogenic SCs and can be considered an alternative source for cell cardiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AT:

adipose tissue

SCs:

stem cells

SEC-AT:

subepicardial adipose tissue

SC-AT:

subcutaneous adipose tissue

References

  • Barile, L., Messina, E., Giacomello, A., and Marbán, E., Endogenous cardiac stem cells, Prog. Cardiovasc. Dis., 2007, vol. 50, pp. 31–48.

    Article  CAS  PubMed  Google Scholar 

  • Bayes-Genis, A., Soler-Botija, C., Farré, J., Sepúlveda, P., Raya, A., Roura, S., Prat-Vidal, C., Gálvez-Montón, C., Montero, J.A., Büscher, D., and Izpisúa, Belmonte, J.C., Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents, J. Mol. Cell. Cardiol., 2010, vol. 49, pp. 771–780.

    Article  CAS  PubMed  Google Scholar 

  • Bayes-Genis, A., Gálvez-Montán, C., Prat-Vidal, C., and Soler-Botija, C., Cardiac adipose tissue: a new frontier for cardiac regeneration?, Int. J. Cardiol., 2013, vol. 167, pp. 22–25.

    Article  PubMed  Google Scholar 

  • Chugh, A.R., Beache, G.M., Loughran, J.H., Mewton, N., Elmore, J.B., Kajstura, J., Pappas, P., Tatooles, A., Stoddard, M.F., Lima, J.A., Slaughter, M.S., Anversa, P., and Bolli, R., Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance, Circulation, 2012, vol. 126, no. 11 (suppl. 1), pp. S54–S64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dimarino, A.M., Caplan, A.I., and Bonfield, T.L., Mesenchymal stem cells in tissue repair, Front. Immunol., 2013, vol. 4, pp. 201–209.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dinsmore, J.H. and Dib, N., Stem cells and cardiac repair: a critical analysis, J. Cardiovasc. Transl. Res., 2008, vol. 1, pp. 41–54.

    Article  PubMed  Google Scholar 

  • Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, Dj., and Horwitz, E., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, 2006, vol. 8, pp. 315–317.

    Article  CAS  PubMed  Google Scholar 

  • Gnecchi, M., Danieli, P., and Cervio, E., Mesenchymal stem cell therapy for heart disease, Vascul. Pharmacol., 2012, vol. 57, pp. 48–55.

    Article  CAS  PubMed  Google Scholar 

  • Ishimine, H., Yamakawa, N., Sasao, M., Tadokoro, M., Kami, D., Komazaki, S., Tokuhara, M., Takada, H., Ito, Y., Kuno, S., Yoshimura, K., Umezawa, A., Ohgushi, H., Asashima, M., and Kurisaki, A., N-Cadherin is a prospective cell surface marker of human mesenchymal stem cells that have high ability for cardiomyocyte differentiation, Biochem. Biophys. Res. Commun., 2013, vol. 438, pp. 753–759.

    Article  CAS  PubMed  Google Scholar 

  • Jansen, B.J., Gilissen, C., Roelofs, H., Schaap-Oziemlak, A., Veltman, J.A., Raymakers, R.A., Jansen, J.H., Kögler, G., Figdor, C.G., Torensma, R., and Adema, G.J., Functional differences between mesenchymal stem cell populations are reflected by their transcriptome, Stem Cells. Dev., 2010, vol. 19, pp. 481–490.

    Article  CAS  PubMed  Google Scholar 

  • Jia, Q., Zhang, X., Deng, T., and Gao, J., Positive correlation of Oct4 and ABCG2 to chemotherapeutic resistance in CD90(+)CD133(+) liver cancer stem cells, Cell Reprogram., 2013, vol. 15, pp. 143–50.

    CAS  PubMed  Google Scholar 

  • Krylova, T.A., Bystrova, O.A., Jakovleva, T.K., Zenin, V.V., Moiseeva, O.M., Parfenov, V.N., and Martynova, M.G., Characteristics of human subepicardial adipose tissue-derived stem cells, Stem Cell Studies, 2011, vol. 1, no. 1, pp. 115–122.

    Article  CAS  Google Scholar 

  • Krylova, T.A., Koltsova, A.M., Zenin, V.V., Musorina, A.S., Yakovleva, T.K., and Poljanskaya, G.G., Comparative characteristics of new lines of mesenchymal stem cells derived from human embryonic stem cells, bone marrow, and foreskin, Cell Tissue Biol., 2012, vol. 6, pp. 95–107.

    Article  Google Scholar 

  • Lobba, A.R., Forni, M.F., Carreira, A.C., and Sogayar, M.C., Differential expression of CD90 and CD14 stem cell markers in malignant breast cancer cell lines, Cytometry, 2012, vol. 81, pp. 1084–1091.

    Article  CAS  PubMed  Google Scholar 

  • Michel, M., Török, N., Godbout, M.J., Lussier, M., Gaudreau, P., Royal, A., and Germain, L., Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage, J. Cell. Sci., 1996, vol. 109, pp. 1017–1028.

    CAS  PubMed  Google Scholar 

  • Musina, R.A., Bekchanova, E.S., Belyavskii, A.V., and Sukhikh, G.T., Differentiation potential of mesenchymal stem cells of different origin, Bull. Exp. Biol. Med., 2006, vol. 141, pp. 147–151.

    CAS  PubMed  Google Scholar 

  • Przybyt, E. and Harmsen, M.C., Mesenchymal stem cells: promising for myocardial regeneration?, Curr. Stem. Cell. Res. Ther., 2013, vol. 8, pp. 270–277.

    Article  CAS  PubMed  Google Scholar 

  • Rabkin, S.W., Epicardial fat: properties, function and relationship to obesity, Obes. Rev., 2006, vol. 8, pp. 253–261.

    Article  Google Scholar 

  • Rica, D.C. and Reardon, M.J., Left heart sarcomas, Methodist. Debakey. Cardiovasc. J., 2010, vol. 6, pp. 49–56.

    Google Scholar 

  • Salameh, A. and Dhein, S., Pharmacology of gap junctions. New pharmacological targets for treatment of arrhythmia, seizure and cancer?, Biochim. Biophys. Acta, 2005, vol. 1719, pp. 36–58.

    Article  CAS  PubMed  Google Scholar 

  • Schubert, K., Gutknecht, D., Köberle, M., Anderegg, U., and Saalbach, A., Melanoma cells use Thy-1 (CD90) on endothelial cells for metastasis formation, Am. J. Pathol., 2013, vol. 182, pp. 266–276.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, D.L., Mishra, R., Sharma, S., Goh, S.K., Deshmukh, S., and Kaushal, S., A strong regenerative ability of cardiac stem cells derived from neonatal hearts, Circulation, 2012, vol. 126, no. 11 (suppl. 1), pp. S46–S53.

    Article  CAS  PubMed  Google Scholar 

  • Spath, C., Schlegel, F., Leontyev, S., Mohr, F.W., and Dhein, S., Inverse relationship between tumor proliferation markers and connexin expression in a malignant cardiac tumor originating from mesenchymal stem cell engineered tissue in a rat in vivo model, Front. Pharmacol., 2013, vol. 4, p. 42. doi: 10.3389/fphar.2013.00042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taléns-Visconti, R., Bonora, A., Jover, R., Mirabet, V., Carbonell, F., Castell, J.V., and Gómez-Lechón, M.J., Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells, World J. Gastroenterol., 2006, vol. 12, pp. 5834–5845.

    PubMed Central  PubMed  Google Scholar 

  • Yan, X., Luo, H., Zhou, X., Zhu, B., Wang, Y., and Bian, X., Identification of CD90 as a marker for lung cancer stem cells in A549 and H446 cell lines, Oncol. Rep., 2013. doi: 10.3892/or.2013.2784

    Google Scholar 

  • Zemelko, V.I., Kozhukharova, I.V., Alekseenko, L.L., Domnina, A.P., Reshetnikova, G.F., Puzanov, M.V., Dmitrieva, R.A., Grinchuk, T.M., Nikolsky, N.N., and Anisimov, S.V., Neurogenic potential of human mesenchymal stem cells isolated from bone marrow, adipose tissue and endometrium: a comparative study, Cell Tissue Biol., 2013, vol. 7, pp. 235–244.

    Article  Google Scholar 

  • Zhu, Y., Liu, T., Song, K., Fan, X., Ma, X., and Cui, Z., Adipose-derived stem cell: a better stem cell than BMSC cell, Biochem. Funct., 2008, vol. 26, pp. 664–675.

    CAS  Google Scholar 

  • Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P., and Hedrick, M.H., Human adipose tissue is a source of multipotent stem cells, Mol. Biol. Cell., 2002, vol. 13, pp. 4279–4295.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Krylova.

Additional information

Original Russian Text © T.A. Krylova, O.A. Bystrova, A.A. Khudyakov, A.B. Malashicheva, O.M. Moiseeva, V.V. Zenin, M.G. Martynova, 2014, published in Tsitologiya, 2014, Vol. 56, No. 3, pp. 212–217.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylova, T.A., Bystrova, O.A., Khudyakov, A.A. et al. Properties of stem cells isolated from subcutaneous and subepicardial adipose tissues. Cell Tiss. Biol. 8, 277–282 (2014). https://doi.org/10.1134/S1990519X1404004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X1404004X

Keywords

Navigation