Skip to main content
Log in

Creep and stress relaxation in the material of a cylindrical layer in its linear motion

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Within the framework of the theory of large deformations, we consider deformation of some material with nonlinear elastic and viscous properties that is located in the gap between two rigid coaxial cylindrical surfaces when the inner surface moves rectilinearly. We study the uniformly acceleratedmotion of the inner cylinder, its subsequentmotion with a constant speed, and further deceleration till the full stop. We calculate stresses, reversible and irreversible deformations, displacements and study the stress relaxation after the full stop of the cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Oleinikov and A. A. Pekarsh, Integrated Design of Processes of Manufacturing Monolithic Panels (Ekom, Moscow, 2009) [in Russian].

    Google Scholar 

  2. E. H. Lee, “Elastic-Plastic Deformation at Finite Strains,” Trans. ASME J. Appl. Mech. 36 (1), 1–6 (1969).

    Article  MATH  Google Scholar 

  3. V. A. Levitas, Large Elastoplastic Deformations of Materials under High Pressure (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  4. G. A. Bykovtsev and A. V. Shitikov, “Finite Deformations of ElastoplasticMedia,” Dokl. Akad. Nauk SSSR 311 (1), 59–62 (1990).

    MathSciNet  MATH  Google Scholar 

  5. Z. Xia and F. Ellyn, “A Finite Elastoplastic Constitutive Formulation with New Co-Rotational Stress-Rate and Strain-Hardening Rule,” Trans. ASME J. Appl.Mech. 62 (3), 733–739 (1995).

    Article  MATH  Google Scholar 

  6. A. A. Burenin, G. A. Bykovtsev, and L. V. Kovtanyuk, “A Simple Model of Finite Strain in an Elastoplastic Medium,” Dokl. Akad. Nauk 347 (2), 199–201 (1996) [Doklady Physics 41, 127–129 (1996)].

    MATH  Google Scholar 

  7. V. P. Myasnikov, “The Equations of Motion of Elastoplastic Materials under Large Deformations,” Vestnik Dal’nevost. Otdel. Ross. Akad. Nauk, No. 4, 8–13 (1996).

    Google Scholar 

  8. A. A. Rogovoi, “Constitutive Relations for Finite Elastic-Inelastic Strains,” Prikl. Mekh. Tekhn. Fiz. 46 (5), 138–149 (2005) [J. Appl. Mech. Tech. Phys. 46 (5), 730–739 (2005)].

    MathSciNet  MATH  Google Scholar 

  9. A. A. Burenin and L. V. Kovtanyuk, Large Irreversible Deformations and Elastic Aftereffect (Dal’nauka, Vladivostok, 2013) [in Russian].

    Google Scholar 

  10. A. V. Shutov and J. Ihlemann, “Analysis of Some Basic Approaches to Finite Strain Elasto-Plasticity in View of Reference Change,” Internat. J. Plasticity No. 63, 183–197 (2014).

    Article  Google Scholar 

  11. S. V. Belykh, K. S. Bormotin, A. A. Burenin, L. V. Kovtanyuk, and A. N. Prokudin, “On Large Isothermal Deformations of Materials with Elastic, Viscous, and Plastic Properties,” Vestnik Chuvash. Gos. Pedagog. Univ. Ser.Mekh. Predel. Sostoyanoya 22 (4), 145–157 (2014).

    Google Scholar 

  12. L. V. Kovtanyuk, “On the Forcing of an Elastoviscoplastic Material through an Inflexible Circular Cylindrical Die,” Dokl. Akad. Nauk 400 (6), 764–767 (2005) [Doklady Physics 50 (2), 112–114 (2005)].

    MathSciNet  Google Scholar 

  13. A. A. Burenin, L. V. Kovtanyuk, and A. L. Mazelis, “Pressing of an Elasto-Visco-Plastic Material between Rigid Coaxial Cylindrical Surfaces,” Prikl. Mat. Mekh. 70 (3), 481–489 (2006).

    MATH  Google Scholar 

  14. A. A. Burenin and L. V. Kovtanyuk, “The Development and Deceleration of the Flow of an Elastoplastic Medium in a Cylindrical Tube,” Prikl. Mat. Mekh. 77 (5), 788–798 (2013) [J. Appl. Math. Mech. 77 (5), 566–572 (2013)].

    MathSciNet  Google Scholar 

  15. A. A. Burenin, L. V. Kovtanyuk, and G. L. Panchenko, “Nonisothermal Motion of a Elastoviscoplastic Medium in the Pipe under Conditions of Changing Pressure Drop,” Dokl. Akad. Nauk 464 (3), 284–287 (2015).

    MathSciNet  Google Scholar 

  16. G. L. Panchenko, “Linear Flow in an Elastoviscoplastic Cylindrical Layer under Single Side Adhesion Conditions,” Vychisl. Mekh. Sploshnykh Sred 4 (4), 86–96 (2011).

    Google Scholar 

  17. A. I. Lurie, Nonlinear Theory of Elasticity (Nauka, Moscow, 1980; North-Holland, Amsterdam, 1990).

    MATH  Google Scholar 

  18. S. K. Godunov and E. A. Romenskii, Elements of Mechanics of Continua and Conservation Laws (Nauchn. Kniga, Novosibirsk, 1998) [in Russian].

    MATH  Google Scholar 

  19. F. H. Norton, The Creep of Steel at High Temperatures (McGraw-Hill Book, New York, 1929).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Kovtanyuk.

Additional information

Original Russian Text © L.V. Kovtanyuk, G.L. Panchenko, 2016, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2016, Vol. XIX, No. 4, pp. 44–50.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovtanyuk, L.V., Panchenko, G.L. Creep and stress relaxation in the material of a cylindrical layer in its linear motion. J. Appl. Ind. Math. 10, 505–510 (2016). https://doi.org/10.1134/S1990478916040062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478916040062

Keywords

Navigation