Skip to main content
Log in

Solvability of a mixed boundary value problem for stationary equations of magnetohydrodynamics of a viscous heat-conducting liquid

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Under study is some boundary value problem for stationary equations of magnetohydrodynamics of a viscous heat-conducting liquid considered together with the Dirichlet condition for the velocity and mixed boundary conditions for the electromagnetic field and temperature. Some sufficient conditions are established on the initial data providing the global solvability of this problem and the local uniqueness of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics. Electrodynamics of Continuous Media (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  2. V. A. Glukhikh, A. V. Tanaev, and I. R. Kirillov, Magnetic Hydrodynamics in Nuclear Energetics (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  3. I. V. Lavrent’ev, “Liquid-Metal Systems of Thermonuclear Reactors–TOKOMAKs,” Magnitn. Gidrodinam. No. 2, 105–124 (1990).

    Google Scholar 

  4. G. Alekseev and R. Brizitskii, “Solvability of the Boundary Value Problem for Stationary Magnetohydrodynamics Equations underMixed Boundary Conditions for theMagnetic Field,” Appl.Math. Letters 32, 13–18 (2014).

    Article  MathSciNet  Google Scholar 

  5. G. V. Alekseev, R. V. Brizitskii, and V. V. Pukhnachev, “Solvability of the Inhomogeneous Mixed Boundary Value Problem for Stationary Magnetohydrodynamic Equations,” Dokl. Akad. Nauk 458 (5), 1–5 (2014) [Doklady Physics 59 (10), 67–471 (2014)].

    Google Scholar 

  6. G. V. Alekseev, “Control Problems for a Stationary Model of Magnetic Hydrodynamics for a Viscous Heat- Conducting Fluid,” UspekhiMekh. 4 (2), 66–116 (2006).

    Google Scholar 

  7. G. V. Alekseev, “Solvability of a Boundary Value Problem for a Stationary Model of the Magnetic Hydrodynamics of a Viscous Heat-Conducting Fluid,” Sibirsk. Zh. Indust.Mat. 9 (1), 13–27 (2006) [J. Appl. Indust. Math. 2 (1), 10–23 (2008)].

    MATH  Google Scholar 

  8. A. J. Meir and P. G. Schmidt, “On Electromagnetically and Thermally Driven Liquid-Metal Flows,” Nonlinear Analysis 47, 3281–3294 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Consiglieri, S. Necasova, and J. Sokolowski, “Incompressible Maxwell–Boussinesq Approximation: Existence, Uniqueness and Shape Sensitivity,” Control and Cybernetics 38, 1193–1215 (2009).

    MathSciNet  MATH  Google Scholar 

  10. L. Consiglieri, S. Necasova, and J. Sokolowski, “New Approach to the IncompressibleMaxwell–Boussinesq Approximation: Existence, Uniqueness and Shape Sensitivity,” J. Differential Equations 249, 3052–3080 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Solonnikov, “Some Stationary Boundary Value Problems in Magnetohydrodynamics,” Trudy Mat. Inst. im. V A.Steklova 59, 174–187 (1960).

    MathSciNet  Google Scholar 

  12. M. D. Gunzburger, A. J. Meir, and J. S. Peterson, “On the Existence, Uniqueness, and Finite Element Approximation of Solution of the Equation of Stationary, Incompressible Magnetohydrodynamics,” Math. Comp. 56, 523–563 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. V. Alekseev, “Control Problems for Stationary Equations ofMagneticHydrodynamics,” Dokl.Ross. Akad. Nauk 395 (3), 322–325 (2004) [DokladyMath. 69 (2), 310–313 (2004)].

    MATH  Google Scholar 

  14. G. V. Alekseev, “Solvability of Control Problems for Stationary Equations of Magnetic Hydrodynamics of a Viscous Fluid,” Sibirsk. Mat. Zh. 45 (2), 243–262 (2004) [SiberianMath. J. 45 (2), 97–213 (2004)].

    MathSciNet  MATH  Google Scholar 

  15. D. Schotzau, “Mixed Finite Element Methods for Stationary Incompressible Magneto-Hydrodynamics,” Numer.Math. 96, 771–800 (2004).

    Article  MathSciNet  Google Scholar 

  16. R. V. Brizitskii and D. A. Tereshko, “On the Solvability of Boundary Value Problems for the Stationary Magnetohydrodynamic Equations with Inhomogeneous Mixed Boundary Conditions,” Differentsialnye Uravneniya 43 (2), 239–250 (2007) [Differential Equations 43 (2), 246–258 (2007)].

    MathSciNet  Google Scholar 

  17. P. Fernandes and G. Gilardi, “Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions,” Math. ModelsMethods Appl. Sci. 7, 957–991 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Auchmuty, “The Main Inequality of Vector Field Theory,” Math. ModelsMethods Appl. Sci. 14, 79–103 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Auchmuty and J. S. Alexander, “Finite Energy Solutions of Mixed 3DDiv-Curl Systems,” Quart. Appl. Math. 64, 335–357 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  20. V. Girault and P. A. Raviart, Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms (Springer, Berlin, 1986).

    Book  MATH  Google Scholar 

  21. G. V. Alekseev, Optimization of Stationary Problems of Heat Transfer and Magnetic Hydrodynamics (Nauchn. Mir, Moscow, 2010) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Alekseev.

Additional information

Original Russian Text © G.V. Alekseev, 2015, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2015, Vol. XVIII, No. 2, pp. 24–35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, G.V. Solvability of a mixed boundary value problem for stationary equations of magnetohydrodynamics of a viscous heat-conducting liquid. J. Appl. Ind. Math. 9, 306–316 (2015). https://doi.org/10.1134/S1990478915030023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478915030023

Keywords

Navigation