Skip to main content
Log in

Mantle sources of the Cenozoic volcanic rocks of East Asia: Derivatives of slabs, the sublithospheric convection, and the lithosphere

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

The spatial-temporal variations of the trace element and Sr isotope composition were analyzed in the Middle-Late Cenozoic volcanic rocks of the East Asian continental margin. The heterogeneity of the sublithospheric mantle was characterized, the active sources of the supraslab mantle were distinguished, and the Southern and Northern sublithospheric convective subdomains of the Transbaikalian low-velocity domain at a depth of 410–200 km were distinguished. The supply of isotopically homogenous mantle from the convective subdomains was replaced in space and time by their mixtures. Isotopically highly depleted material was derived from the mantle above the Kula-Izanagi and Pacific slabs ∼43.5, 23–17, and <15 Ma, while moderately depleted mantle was derived from the Northern and Southern subdomains ∼37, 31–23, and ∼16 Ma and 19–12 Ma, respectively. Similar convective but shallower isotopically enriched material was determined in mixtures from the Southern convective subdomain in the Northeast Japanese arc within 30–9 Ma and in mixtures with isotopically enriched lithospheric mantle in the central Heilongjiang Province <9.6 Ma. Lithospheric melts erupted during drastic changes in the dynamics of the sublithospheric convective subdomains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. S. Brandt, S. V. Rasskazov, V. K. Popov, and S. B. Brandt, “Potassic specifics of basalts from the Sinii Utes Depression: geochemical correlations and problems of K-Ar dating (Southern Primorye Region),” Russ. J. Pac. Geol. 3(4), 374–387 (2009).

    Article  Google Scholar 

  2. Geodynamics, Magmatism, and Metallogeny of East Russia, Ed. by A. I. Khanchuk (Dal’nauka, Vladivostok, 2006) [in Russian].

    Google Scholar 

  3. Geology, Geodynamics, and Petroleum Prospects of Sedimentary Basins of the Tatar Strait, Ed. by A. E. Zharov, G. L. Kirillova, L. S. Margulis et. al., (DVO RAN, Vladivostok, 2004) [in Russian].

    Google Scholar 

  4. Map of Volcanotectonic Structures of the Coastal Continental Part of the USSR Far East. 1: 1500000, Ed. by N. A. Shilo and Yu. A. Kosygin (Moscow, 1982) [in Russian].

    Google Scholar 

  5. Yu. A. Martynov, Geochemistry of Basalts of the Active Continental Margins and Mature Island Arcs: Evidence from the Northwest Pacific (Dal’nauka, Vladivostok, 1999) [in Russian].

    Google Scholar 

  6. L. M. Parfenov, N. A. Berzin, A. I. Khanchuk, G. Badarch, V. G. Belichenko, A. N. Bulgatov, S. I. Dril’, G. L. Kirillova, M. I. Kuz’min, U. Nokle- berg, A. V. Prokop’ev, V. F. Timofeev, O. Tomurtogoo, and Kh. Yan, “Model of Formation of the Central and Northeastern Asian orogenic belts,” Tikhookean. Geol. 22(6), 7–41 (2003).

    Google Scholar 

  7. S. V. Rasskazov, E. V. Saranina, and Yu. A. Martynov, “Pulsed ascent of mantle diapirs in the Sea of Japan and Baikal mobile systems,” in Problems of Geodynamics and Earthquake Forecasting (ITiG DVO RAN, Khabarovsk, 2001), pp. 139–156 [in Russian].

    Google Scholar 

  8. S. V. Rasskazov, E. V. Saranina, E. I. Demonterova, et al., “Mantle sources of Late Cenozoic volcanics (East Sayan), as inferred from Pb, Sr, and Nd isotopes,” Russ. Geol. Geophys. 43(12), 1065–1079 (2002).

    Google Scholar 

  9. S. V. Rasskazov, N. A. Logachev, V. M. Kozhevnikov, and T. B. Yanovskaya, “Multistage dynamics of the upper mantle in Eastern Asia: relationships between wandering volcanism and low-velocity anomalies,” Dokl. Earth Sci. 390(1), 492–496 (2003).

    Google Scholar 

  10. S. V. Rasskazov, V. S. Prikhod’ko, E. V. Saranina, M. N. Maslovskaya, T. A. Yasnygina, V. G. Semenova, and A. V. Travin, “Spatiotemporal variations of mantle and crustal components in the Late Cenozoic volcanic rocks of the Middle Amur Basin, southeast Russia,” Tikhookean. Geol. 22(3), 3–27 (2003).

    Google Scholar 

  11. S. V. Rasskazov, E. V. Saranina, Yu. A. Martynov, A. A. Chashchin, S. O. Maksimov, I. S. Brandt, S. B. Brandt, M. N. Maslovskaya, and S. V. Kovalenko, “Development of the Late Cenozoic magmatism of active continental margin of South Primorye,” Tikhookean. Geol. 22(1), 92–109 (2003).

    Google Scholar 

  12. S. V. Rasskazov, T. A. Yasnygina, E. V. Saranina, M. N. Maslovskaya, N. N. Fefelov, I. S. Brandt, S. B. Brandt, S. V. Kovalenko, Yu. A. Martynov, and V. K. Popov, “Cenozoic magmatism of Southwestern Primorye: pulsed melting of mantle and crust,” Tikhookean. Geol. 23(6), 3–31 (2004).

    Google Scholar 

  13. S. V. Rasskazov, S. B. Brandt, I. S. Brandt, et al., Radioisotope Geology in Tasks and Examples (SO RAN, Fil. “Geo”, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  14. S. V. Rasskazov, O. A. Mel’nikov, A. V. Rybin, V. A. Gur’yanov, T. A. Yasnygina, I. S. Brandt, S. B. Brandt, E. V. Saranina, M. N. Maslovskaya, N. N. Fefelov, and A. E. Zharov, “Spatial change of deep sources of Cenozoic volcanic rocks of the western South Sakhalin coast,” Tikhookean. Geol. 24(2), 10–32 (2005).

    Google Scholar 

  15. S. V. Rasskazov, V. P. Simanenko, A. I. Malinovsky, and T. A. Yasnygina, “Geochemical evolution of Late Eocene-Oligocene magmatism in the Schmidt Peninsula (northern Sakhalin),” Russ. Geol. Geophys. 1(3), 247–256 (2007).

    Article  Google Scholar 

  16. S. V. Rasskazov, I. S. Chuvashova, T. A. Yasnygina, et al., “Slab and supraslab Late Cenozoic melts in the Asian and Eastern Hangai convergent margin zones, Central Mongolia,” Izv. Irkustk. Gos. Univ., Ser. Nauki Zemle, No. 1, 129–149 (2008).

    Google Scholar 

  17. S. V. Rasskazov, V. S. Prikhod’ko, T. A. Yasnygina, N.N. Fefelov, E. V. Saranina, I. P. Voinova, and S. B. Brandt, “Mantle sources of the Cenozoic volcanic rocks of the Lake Kizi Region in the East Sikhote Alin (commented by reviewer Yu. A. Martynov),” Russ. J. Pac. Geol. 4(5), 441–460 (2010).

    Article  Google Scholar 

  18. S. V. Rasskazov, T. A. Yasnygina, N. N. Fefelov, and E. V. Saranina, “Geochemical evolution of Middle-Late Cenozoic magmatism in the northern part of the Rio Grande Rift, Western United States,” Tikhookean. Geol. 4(1), 13–40 (2010).

    Google Scholar 

  19. S. V. Rasskazov, I. S. Chuvashova, Ya. Liu, et al., “Proportions of lithospheric and asthenospheric components in Late Cenozoic K and K-Na lavas in Heilongjiang Province, Northeastern China,” Petrology, 19(6), 568–600 (2011).

    Article  Google Scholar 

  20. A. Signimura, “Composition of primary magmas and seismicity of Earth’s mantle in the island arc region (preliminary note),” in Proceedings of Symposium on Continental Margins and Island Arcs, Ed. by W. H. Pool (Mir, 1970), pp. 263–270 [in Russian].

    Google Scholar 

  21. G. Faure, Principles of Isotope Geology (Wiley, New York, 1986).

    Google Scholar 

  22. A. I. Khanchuk, “Paleogeodynamic analysis of the formation of the Russian Far East ore deposits,” in Ore Deposits of Continental Margins (Dal’nauka, Vladivostok, 2000), pp. 5–34 [in Russian].

    Google Scholar 

  23. I. S. Chuvashova, S. V. Rasskazov, T. A. Yasnygina, et al., “Holocene volcanism in Central Mongolia and Northeast China: asynchronous decompressional and fluid melting of the mantle,” J. Volcanol. Seismol. 1(6), 372–396 (2007).

    Article  Google Scholar 

  24. I. S. Chuvashova, S. V. Rasskazov, Ya. Liu, et al., “Isotopically enriched components and evolution of Late Cenozoic potassic magmatism of the Heilonjiang Province, Northeast China,” Izv. Gos. Univ. Ser. Nauki Zemle, 2(2), 181–198 (2009).

    Google Scholar 

  25. R. L. Christiansen, G. R. Foulgler, and J. R. Evans, “Upper-mantle origin of the Yellowstone hotspot,” Geol. Soc. Am. Bull. 114, 1245–1256 (2002).

    Article  Google Scholar 

  26. O. Gudmundsson and M. Sambridge, “A regionalized upper mantle (RUM) seismic model,” J. Geophys. Res. 104, 28803–28812 (1998).

    Google Scholar 

  27. Y. Fukao, M. Obayashi, H. Inoue, and M. Nebai, “Subducting slabs stagnant in the mantle transition zone,” J. Geophys. Res. 97, 4809–4822 (1992).

    Article  Google Scholar 

  28. A. W. Hofmann, “Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements” in Treatise on Geochemistry. Volume 2. The Mantle and Core, Ed. by R. W. Carlson (Elsevier, Washington, 2003), pp. 61–102.

    Google Scholar 

  29. H. Hoshi and M. Takahashi, “Miocene counterclockwise rotation of Northeast Japan: a review and new model,” Bull. Geol. Surv. Jap. 50, 3–16 (1999).

    Google Scholar 

  30. L. Jolivet, K. Tamaki, and M. Fournier, “Japan Sea opening history and mechanism: a synthesis,” J. Geophys. Res. 99, 22237–22259 (1994).

    Article  Google Scholar 

  31. I. Kumagai, A. Davaille, and K. Kuruta, “Successful and failed plumes: the Icelandic case,” Geophys. Res. Abstr. 9, 04028 (2007).

    Google Scholar 

  32. K. Kusunoki and G. Kumura, “Collision and extrusion at the Kuril-Japan junction,” Tectonics 17, 843–858 (1988).

    Article  Google Scholar 

  33. J. Lei and D. Zhao, “P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia,” Tectonophysics 397, 281–295 (2005).

    Article  Google Scholar 

  34. J. Liu and H. Taniguchi, “Active volcanoes in China,” Northeast Asian Studies 6, 173–189 (2001).

    Google Scholar 

  35. J. Liu, J. Han, and W. S. Fyfe, “Cenozoic episodic volcanism and continental rifting in Northeast China and possible link to the Japan Sea development as revealed from K-Ar geochronology,” Tectonophysics 339, 385–401 (2001).

    Article  Google Scholar 

  36. S. Maruyama, M. Santosh, and D. Zhao, “Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the core-mantle boundary,” Gondwana Res. 11, 7–37 (2007).

    Article  Google Scholar 

  37. M. A. Menzies, “Cratonic, circumcratonic and oceanic mantle domains beneath the Eastern United States,” J. Geophys. Res. 94(B6), 7899–7915 (1989).

    Article  Google Scholar 

  38. J. Ohki, N. Waranabe, K. Shuto, and T. Itaya, “Shifting of the volcanic fronts during Early to Late Miocene in the Northeast Japan Arc,” The Island Arc 2, 87–93 (1993).

    Article  Google Scholar 

  39. J. Ohki, K. Shuto, and H. Kagami, “Middle Miocene bimodal magmatism by asthenospheric upwelling: Sr and Nd isotopic evidence from the back-arc region of the Northeast Japan Arc,” Geochem. J. 28(6), 473–487 (1994).

    Article  Google Scholar 

  40. S. Okamura, R. J. Arculus, Y. A. Martynov, et al., “Multiple magma sources involved in marginal-sea formation: Pb, Sr, and Nd isotopic evidence from Japan Sea Region,” Geology 26(7), 619–622 (1998).

    Article  Google Scholar 

  41. S. Okamura, H. Sekine, K. Arai, et al., “K-Ar ages and geochemistry of the Cenozoic volcanic rocks from Hamamasu Area, Central Hokkaido, Japan—temporal changes in magma geochemistry resulted from tectonics of arc-arc junction,” J. Geol. Soc. Japan. 106(5), 330–346 (2000).

    Article  Google Scholar 

  42. S. Okamura, R. J. Arculus, and Y. A. Martynov, “Cenozoic magmatism of the North-Eastern Eurasian margin: the role of lithosphere versus asthenosphere,” J. Petrol. 46(2), 221–253 (2005).

    Article  Google Scholar 

  43. Y.-I. Otofuji, “Large tectonic movement of the Japan Arc in Late Cenozoic times inferred from paleomagnetism: review and synthesis,” The Island Arc 5, 229–249 (1996).

    Article  Google Scholar 

  44. Y.-I. Otpfuji, K. Sato, N. Iba, et al., “Cenozoic north-ward translation of the Kitakami Massif in Northeast Japan: paleomagnetic evidence,” Earth Planet. Sci. Lett. 153, 119–112 (1997).

    Article  Google Scholar 

  45. S. Rasskazov, H. Taniguchi, A. Goto, and K. Litasov, “Magmatic expression of plate subduction beneath East Asia in the Mesozoic through Cenozoic,” Northeast Asian Studies 9, 179–219 (2004).

    Google Scholar 

  46. S. Rasskazov and H. Taniguchi, “Magmatic response to the Late Phanerozoic plate subduction beneath East Asia,” NEAS Monograph Series, No. 21 (2006).

    Google Scholar 

  47. J. Ritsema and H. van Heijst, “New seismic model of the upper mantle beneath Africa,” Geology 28(1), 63–66 (2000).

    Article  Google Scholar 

  48. H. Sato, “The relationship between Late Cenozoic tectonic events and stress field and basin development in Northeast Japan,” J. Geophys. Res. 99, 22261–22274 (1994).

    Article  Google Scholar 

  49. M. Sato, K. Shuto, and M. Yagi, “Mixing of asthenospheric and lithospheric mantle-derived basalt magmas as shown by along-arc variation in Sr and Nd isotopic compositions of Early Miocene basalts from back-arc margin of the NE Japan Arc,” Lithos 96, 453–474 (2007).

    Article  Google Scholar 

  50. K. Shuto, J. Ohki, H. Kagami, et al., “The relationships between drastic changes in Sr isotope ratios of magma sources beneath the NE Japan Arc and the spreading of the Japan Sea back-arc basin,” Mineral. Petrol. 49, 71–90 (1993).

    Article  Google Scholar 

  51. K. Tamaki, K. Suyehiro, J. Allan, et al., “Tectonic synthesis and implications of Japan Sea ODP Drilling,” Proc. Ocean Drill. Program: Sci. Results 127–128(2), 1333–1348 (1992).

    Google Scholar 

  52. Y. Tatsumi, D. I. Hamilton, and R. W. Nesbitt, “Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from high pressure experiments and natural rocks,” J. Volcanol. Geotherm. Res. 29, 293–309 (1986).

    Article  Google Scholar 

  53. Y. Tatsumi, “Migration of fluid phases and generation of basalt magmas in subduction zones,” J. Geophys. Res. 94(B4), 4697–4704 (1989).

    Article  Google Scholar 

  54. Y. Tatsumi, S. Maruyama, and S. Nohda, “Mechanism of backarc opening in the Japan Sea: role of asthenospheric injection,” Tectonophysics 181, 299–306 (1990).

    Article  Google Scholar 

  55. Y. Watanabe, “Late Cenozoic metallogeny of southwest Hokkaido, Japan,” Resource Geol 52, 191–210 (2002).

    Article  Google Scholar 

  56. S. M. Wee, “Geochemistry and isotopic systematics of Cenozoic alkaline volcanic rocks in Korea and NE China,” Neues Jahrb. Mineral., Abh. 177(3), 213–240 (2002).

    Article  Google Scholar 

  57. K. Yamamoto, K. Shuto, N. Watanabe, et al., “K-Ar ages of the Tertiary volcanic rocks from Okushiri Island and the petrological characters of the Oligocene to Early Miocene volcanic rocks from the Northeastern Japan Arc and the surrounding areas,” J. Miner. Petrol. and Econ. Geol. 86, 507–521 (1991).

    Article  Google Scholar 

  58. T. B. Yanovskaya and V. M. Kozhevnikov, “3D S-ware velocity pattern in the upper mantle beneath the continent of Asia from Raleigh wave data,” Phys. Earth. Planet. Inter. 138, 263–278.

  59. M. Zhang, P. Suddaby, R. N. Thompson, et al., “Potassic rocks in NE China: geochemical constraints on mantle source and magma genesis,” J. Petrol. 36(5), 1275–1303 (1995).

    Article  Google Scholar 

  60. Z. Zhang, C. Feng, Z. Li, et al., “Petrochemical study of the Jingpohu Holocene alkali basaltic rocks, northeastern China,” Geochem. J. 36, 133–153 (2002).

    Article  Google Scholar 

  61. D. Zhao, “Global tomographic images of mantle plumes and subducting slabs: insight into deep earth dynamics,” Phys. Earth. Planet. Inter. 146, 3–34 (2004).

    Article  Google Scholar 

  62. D. Zhao, Y. Tian, J. Lei, et al., “Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab,” Phys. Earth Planet. Inter. 173, 197–206 (2009).

    Article  Google Scholar 

  63. H. Zou, A. Zindler, X. Xu, and Q. Qi, “Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance,” Chem. Geol. 171(1–2), 33–47 (2000).

    Article  Google Scholar 

  64. H. Zou, M. R. Reid, Y. Liu, et al., “Constraints on the origin of historic potassic basalts from northeast China by U-Th disequilibrium data,” Chem. Geol. 200, 189–201 (2003).

    Article  Google Scholar 

  65. H. Zou, Q. Fan, and Y. Yao, “U-Th systematics of dispersed young volcanoes in NE China: asthenosphere upwelling caused by piling up and upward thickening of stagnant Pacific Slab,” Chem. Geol. 255, 134–142 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rasskazov.

Additional information

Original Russian Text © S.V. Rasskazov, T.A. Yasnygina, I.S. Chuvashova, 2014, published in Tikhookeanskaya Geologiya, 2014, Vol. 33, No. 5, pp. 47–65.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasskazov, S.V., Yasnygina, T.A. & Chuvashova, I.S. Mantle sources of the Cenozoic volcanic rocks of East Asia: Derivatives of slabs, the sublithospheric convection, and the lithosphere. Russ. J. of Pac. Geol. 8, 360–378 (2014). https://doi.org/10.1134/S1819714014050030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714014050030

Keywords

Navigation