Skip to main content
Log in

Theoretical investigation of structures and compositions of double neon-methane clathrate hydrates, depending on gas phase composition and pressure

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The region of existence of neon clathrate hydrates is an actual problem of hydrate chemistry. The current work presents theoretical study of the equilibrium formation conditions of pure neon clathrate hydrates and double clathrate hydrates of neon-methane mixture. The structures and properties of double clathrate hydrates were described within the scope of the previously developed molecular clathrate hydrate model that takes into account the influence of guest molecules on the host lattice, interaction of guest molecules between themselves, and the possibility of multiple filling of host lattice cages by guest molecules. The model makes it possible to find an equilibrium state and thermodynamic properties of clathrate hydrates at given values of p and T. In the present work, we considered the properties of double clathrate hydrates in the range of pressures from 0 to 4 kbar at 250 K. The results of modeling have shown that the mass fraction of neon in double clathrate hydrate of Ne and CH4 mixture of cubic structure I (sI) can reach 26%, and 22.5% in double hydrate of cubic structure II (sII) even at a low methane concentration (1%) in gas phase, at high pressure. It is shown that in double clathrate hydrates of the Ne and CH4 mixture at high pressures, phase transition sII-sI can occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sloan, E.D. and Koh, C.A., Clathrate Hydrates of Natural Gases, 3d ed., CRC Press, Boca Raton FL: Taylor & Francis, 2008, p. 752.

    Google Scholar 

  2. Dyadin, Yu.A., Larionov, E.G., Aladko, E.Ya., Manakov, A.Yu., Zhurko, F.V., Mikina, T.V., Komarov, V.Yu., and Grachev, E.V., J. Struct. Chem., 1999, vol. 40, pp. 790–795.

    Article  Google Scholar 

  3. Mao, W.L., Mao, H., Goncharov, A.F., Struzhkin, V.V., Guo, Q., Hu, J., Shu, J., Hemley, R.J., Somayazulu, M., and Zhao, Y., Science, 2002, vol. 297, pp. 2247–2249.

    Article  ADS  Google Scholar 

  4. Mao, W.L. and Mao, H., PNAS, 2004, vol. 101, pp. 708–710.

    Article  ADS  Google Scholar 

  5. Nikitin, B.A., Issledovaniya po khimii blagorodnykh gazov (Investigations into Chemistry of Noble Gases), Moscow: Izd. AN SSSR, 1956.

    Google Scholar 

  6. Villard, P., Ann. Chim. Phys., 1897, vol. 11, no. 7, pp. 353–360.

    Google Scholar 

  7. Barrer, R.M. and Ruzicka, D.J., Trans. Faraday Soc., 1962, vol. 58, pp. 2239–2252.

    Article  Google Scholar 

  8. Strobel, T.A., Hester, K.C., Sloan, E.D., and Koh, C.A., J. Am. Chem. Soc., 2007, vol. 129, pp. 9544–9545.

    Article  Google Scholar 

  9. Sugahara, T., Murayama, S., Hashimoto, S., and Ohgaki, K., Fluid Phase Equilib., 2005, vol. 233, pp. 190–193.

    Article  Google Scholar 

  10. Kim, D.Y. and Lee, H., J. Am. Chem. Soc., 2005, vol. 127, pp. 9996–9997.

    Article  Google Scholar 

  11. Skiba, S.S., Larionov, E.G., Manakov, A.Y., Kolesov, B.A., and Kosyakov, V.I., J. Phys. Chem. B, 2007, vol. 111, p. 11214.

    Article  Google Scholar 

  12. Park, J. and Lee, H., Korean J. Chem. Eng., 2007, vol. 24, pp. 624–627.

    Article  Google Scholar 

  13. Skiba, S.S., Larionov, E.G., Manakov, A.Y., Kolesov, B.A., Ancharov, A.I., and Aladko, E.Y., J. Inclusion Phenom. Macrocyclic Chem., 2009, vol. 63, pp. 383–386.

    Article  Google Scholar 

  14. Chapoy, A., Anderson, R., and Tohidi B., J. Am. Chem. Soc., 2007, vol. 129, pp. 746–747.

    Article  Google Scholar 

  15. Strobel, T.A., Koh, C.A., and Sloan, E.D., J. Phys. Chem. B, 2008, vol. 112, pp. 1885–1887.

    Article  Google Scholar 

  16. Belosludov, V.R., Subbotin, O.S., Belosludov, R.V., Mizuseki, H., and Kawazoe, Y., Comp.Mater. Sci., 2010, sappl. 49, pp. 187–193.

    Article  Google Scholar 

  17. Tanaka, H. and Kiyohara, K., J. Chem. Phys., 1993, vol. 98, pp. 4098–4109.

    Article  ADS  Google Scholar 

  18. Belosludov, V.R., Lavrentiev, M.Yu., and Syskin, S.A., Physica Status Solidi (b), 1988, vol. 149, pp. 133–142.

    Article  ADS  Google Scholar 

  19. Belosludov, R.V., Igumenov, I.K., Belosludov, V.R., and Shpakov, V.P., Mol. Phys., 1994, vol. 82, pp. 51–66.

    Article  ADS  Google Scholar 

  20. Prigogine, I. and Defay, R., Chemical Thermodynamics, London: Longmans, 1954.

    Google Scholar 

  21. Subbotin, O.S., Adamova, T.P., Belosludov, R.V., Mizuseki, H., Kawazoe, Y., Kudoh, J., Rodger, P.M., and Belosludov, V.R., J. Chem. Phys., 2009, vol. 131, p. 114507.

    Article  ADS  Google Scholar 

  22. Lokshin, K.A. and Zhao, Y., Appl. Phys. Lett., 2006, vol. 88, p. 131909.

    Article  ADS  Google Scholar 

  23. Ramírez, R. and Herrero, C.P., J. Chem. Phys., 2008, vol. 129, p. 204502.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Yu. Bozhko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozhko, Y.Y., Subbotin, O.S., Fomin, V.M. et al. Theoretical investigation of structures and compositions of double neon-methane clathrate hydrates, depending on gas phase composition and pressure. J. Engin. Thermophys. 23, 9–19 (2014). https://doi.org/10.1134/S1810232814010020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232814010020

Keywords

Navigation