Skip to main content
Log in

The FPU Problem as a Statistical-mechanical Counterpart of the KAM Problem, and Its Relevance for the Foundations of Physics

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We give a review of the Fermi–Pasta–Ulam (FPU) problem from the perspective of its possible impact on the foundations of physics, concerning the relations between classical and quantum mechanics. In the first part we point out that the problem should be looked upon in a wide sense (whether the equilibrium Gibbs measure is attained) rather than in the original restricted sense (whether energy equipartition is attained). The second part is devoted to some very recent results of ours for an FPU-like model of an ionic crystal, which has such a realistic character as to reproduce in an impressively good way the experimental infrared spectra. Since the existence of sharp spectral lines is usually considered to be a characteristic quantum phenomenon, even unconceivable in a classical frame, this fact seems to support a thesis suggested by the original FPU result. Namely, that the relations between classical and quantum mechanics are much subtler than usually believed, and should perhaps be reconsidered under some new light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell, D.K., Rosenau, Ph., and Zaslavsky, G. M., Introduction: The Fermi–Pasta–Ulam Problem — The First Fifty Years, Chaos, 2005, vol. 15, no. 1, 015101, 4 pp.

  2. The Fermi–Pasta–Ulam Problem: A Status Report, G.Gallavotti (Ed.), Lect. Notes Phys., vol. 728, Berlin: Springer, 2008.

  3. Schilpp, P. A., Albert Einstein: Philosopher-Scientist, 3rd ed., Library of Living Philosophers, vol. 7, Peru, Ill.: Open Court, 1998.

    Google Scholar 

  4. Carati, A. and Galgani, L., Progress along the Lines of the Einstein Classical Program: An Enquiry on the Necessity of Quantization in Light of the Modern Theory of Dynamical Systems: Notes (in an Extremely Preliminary Form) for a Course on the Foundations of Physics at the Milan University, https://doi.org/www.mat.unimi.it/users/carati/didattica/fondamenti/indice.pdf (2018).

    Google Scholar 

  5. Born, M., Atomic Physics, 8th ed., New York: Dover, 1989.

    Google Scholar 

  6. Carati, A., Galgani, L., and Giorgilli, A., The Fermi–Pasta–Ulam Problem As a Challenge for the Foundations of Physics, Chaos, 2005, vol. 15, no. 1, 015105, 19 pp.

    Book  MATH  Google Scholar 

  7. Benettin, G., Carati, A., Galgani, L., and Giorgilli, A., The Fermi–Pasta–Ulam Problem and the Metastability Perspective, in The Fermi–Pasta–Ulam Problem: A Status Report, G.Gallavotti (Ed.), Lect. Notes Phys., vol. 728, Berlin: Springer, 2008, pp. 151–189.

    MATH  Google Scholar 

  8. Poincaré, H., Les méthodes nouvelles de la mécanique céleste: Vol. 1. Solutions périodiques. Non-existence des intégrales uniformes. Solutions asymptotique, Paris: Gauthier-Villars, 1892, pp. 233–268.

    MATH  Google Scholar 

  9. Fermi, E., Pasta, J., and Ulam, S., Studies of Nonlinear Systems, in Collected Papers of Enrico Fermi: Vol. 2. United States, 1939–1945, E.Amaldi et al. (Eds.), Chicago, Ill.: Univ. of Chicago, 1965, pp. 978–993.

    Google Scholar 

  10. Fermi, E., Beweis, dass ein mechanisches Normalsystem im allgemeinen quasi-ergodisch ist, in Collected Papers of Enrico Fermi: Vol. 1. Italy, 1921–1938, E.Amaldi et al. (Eds.), Chicago, Ill.: Univ. of Chicago, 1962, pp. 79–86.

    Google Scholar 

  11. Zabusky, N. J., Fermi–Pasta–Ulam, Solitons and the Fabric of Nonlinear and Computational Science: History, Synergetics, and Visiometrics, Chaos, 2005, vol. 15, no. 1, 015102, 16 pp.

    Google Scholar 

  12. Zabusky, N. J. and Kruskal, M. D., Interaction of “Solitons” in a Collisionless Plasma and the Recurrence of Initial States, Phys. Rev. Lett., 1965, vol. 15, no. 6, pp. 240–243.

    Article  MATH  Google Scholar 

  13. Gardner, C. S., Greene, J.M., Kruskal, M.D., and Miura, R.M., Method for Solving the Korteweg–deVries Equation, Phys. Rev. Lett., 1967, vol. 19, no. 19, pp. 1095–1097.

    Article  MATH  Google Scholar 

  14. Berman, G.P. and Izrailev, F.M., The Fermi–Pasta–Ulam Problem: Fifty Years of Progress, Chaos, 2005, vol. 15, no. 1, 015104, 18 pp.

    Google Scholar 

  15. Chirikov, B.V., Resonance Processes in Magnetic Traps, J. Nucl. Energy: Part C, 1960, vol. 1, no. 4, pp. 253–260; see also: Soviet J. Atom. Energy, 1960, vol. 6, no. 6, pp. 464–470.

    Article  Google Scholar 

  16. Izrailev, F.M. and Chirikov, B.V., Statistical Properties of a Nonlinear String, Sov. Phys. Dokl., 1966, vol. 11, no. 1, pp. 30–34; see also: Dokl. Akad. Nauk SSSR, 1966, vol.166, no. 1, pp. 57–59.

    MATH  Google Scholar 

  17. Izrailev, F. M., Khisamutdinov, A. I., and Chirikov, B. V., Numerical Experiments with a Chain of Coupled Anharmonic Oscillators, Los Alamos Technical Report LA-4440 (1970); see also: Report 252, Novosibirsk: Institute of Nuclear Physics, 1968.

    Google Scholar 

  18. Nekhoroshev, N. N., An Exponential Estimate of the Stability Time of Near-Integrable Hamiltonian Systems, Russian Math. Surveys, 1977, vol. 32, no. 6, pp. 1–65; see also: Uspekhi Mat. Nauk, 1977, vol. 32, no. 6(198), pp. 5–66.

    Article  MATH  Google Scholar 

  19. Benettin, G., Galgani, L., and Giorgilli, A., A Proof of Nekhoroshev’s Theorem for the Stability Times in Nearly Integrable Hamiltonian Systems, Celestial Mech., 1985, vol. 37, no. 1, pp. 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  20. Bambusi, D. D. and Giorgilli, A., Exponential Stability of States Close to Resonance in Infinite Dimensional Hamiltonian Systems, J. Stat. Phys., 1993, vol. 71, nos. 3–4, pp. 569–606.

    Article  MathSciNet  MATH  Google Scholar 

  21. Bocchieri, P., Scotti, A., Bearzi, B., and Loinger, A., Anharmonic Chain with Lennard–Jones Interaction, Phys. Rev. A, 1970, vol. 2, no. 5, pp. 2013–2019.

    Article  Google Scholar 

  22. Galgani, L. and Scotti, A., Planck-Like Distribution in Classical Nonlinear Mechanics, Phys. Rev. Lett., 1972, vol. 28, no. 18, pp. 1173–1176.

    Article  Google Scholar 

  23. Cercignani, C., Galgani, L., and Scotti, A., Zero-Point Energy in Classical Nonlinear Mechanics, Phys. Lett. A, 1972, vol. 38, no. 6, pp. 403–404.

    Article  Google Scholar 

  24. Galgani, L. and Scotti, A., Recent Progress in Classical Nonlinear Dynamics, Riv. Nuovo Cimento, 1972, vol. 2, no. 2, pp. 189–209.

    Article  MathSciNet  Google Scholar 

  25. Carati, A., An Averaging Theorem for Hamiltonian Dynamical Systems in the Thermodynamic Limit, J. Stat. Phys., 2007, vol. 128, no. 4, pp. 1057–1077.

    Article  MathSciNet  MATH  Google Scholar 

  26. Neishstadt, A. I., Averaging in Multifrequency Systems: 2, Sov. Phys. Dokl., 1976, vol. 21, no. 2, pp. 80–82; see also: Dokl. Akad. Nauk SSSR, 1976, vol. 226, no. 6, pp. 1295–1298.

    Google Scholar 

  27. De Roeck, W. and Huveneers, F., Asymptotic Localization of Energy in Non-Disordered Oscillator Chains, Comm. Pure Appl. Math., 2015, vol. 68, no. 9, pp. 1532–1568.

    Article  MathSciNet  MATH  Google Scholar 

  28. Maiocchi, A., Bambusi, D., and Carati, A., An Averaging Theorem for FPU in the Thermodynamic Limit, J. Stat. Phys., 2014, vol. 155, no. 2, pp. 300–322.

    Article  MathSciNet  MATH  Google Scholar 

  29. Carati, A. and Maiocchi, A., Exponentially Long Stability Times for a Nonlinear Lattice in the Thermodynamic Limit, Comm. Math. Phys., 2012, vol. 314, no. 1, pp. 129–161.

    Article  MathSciNet  MATH  Google Scholar 

  30. Giorgilli, A., Paleari, S., and Penati, T., An Extensive Adiabatic Invariant for the Klein–Gordon Model in the Thermodynamic Limit, Ann. Henri Poincaré, 2015, vol. 16, no. 4, pp. 897–959.

    Article  MathSciNet  MATH  Google Scholar 

  31. Maiocchi, A., Freezing of the Optical Branch Energy in a Diatomic FPU Chain, arXiv:1808.09359 (2018).

    Google Scholar 

  32. Carati, A., Galgani, L., Giorgilli, A., and Paleari, S., Fermi–Pasta–Ulam Phenomenon for Generic Initial Data, Phys. Rev. E, 2007, vol. 76, no. 2, 022104, 4 pp.

    Google Scholar 

  33. Berchialla, L., Galgani, L., and Giorgilli, A., Localization of Energy in FPU Chains, Discrete Contin. Dyn. Syst., 2004, vol. 11, no. 4, pp. 855–866.

    Article  MathSciNet  MATH  Google Scholar 

  34. Benettin, G. and Ponno, A., Time-scales to Equipartition in the Fermi–Pasta–Ulam Problem: Finite-Size Effects and Thermodynamic Limit, J. Stat. Phys., 2011, vol. 144, no. 4, pp. 793–812.

    Article  MathSciNet  MATH  Google Scholar 

  35. Benettin, G., Christodoulidi, H., and Ponno, A., The Fermi–Pasta–Ulam Problem and Its Underlying Integrable Dynamics, J. Stat. Phys., 2013, vol. 152, no. 2, pp. 195–212.

    Article  MathSciNet  Google Scholar 

  36. Berchialla, L., Giorgilli, A., and Paleari, S., Exponentially Long Times to Equipartition in the Thermodynamic Limit, Phys. Lett. A, 2004, vol. 321, no. 3, pp. 167–172.

    Article  MATH  Google Scholar 

  37. Paleari, S. and Penati, T., Equipartition Times in a Fermi–Pasta–Ulam System, Discrete Contin. Dyn. Syst., 2005, suppl., pp. 710–719.

    Google Scholar 

  38. Siegel, C. L., On the Integrals of Canonical Systems, Ann. of Math. (2), 1941, vol. 42, pp. 806–822.

    Article  MathSciNet  MATH  Google Scholar 

  39. Ferguson, W.E. Jr., Flaschka, H., and McLaughlin, D.W., Nonlinear Normal Modes for the Toda Chain, J. Comput. Phys., 1982, vol. 45, no. 2, pp. 157–209.

    Article  MathSciNet  MATH  Google Scholar 

  40. Rink, B., An Integrable Approximation for Fermi–Pasta–Ulam Lattice, in The Fermi–Pasta–Ulam Problem: A Status Report, G.Gallavotti (Ed.), Lect. Notes Phys., vol. 728, Berlin: Springer, 2008, pp. 283–301.

    MATH  Google Scholar 

  41. Giorgilli, A., Paleari, S., and Penati, T., Local Chaotic Behaviour in the Fermi–Pasta–Ulam System, Discrete Contin. Dyn. Syst. Ser. B, 2005, vol. 5, no. 4, pp. 991–1004.

    Article  MathSciNet  MATH  Google Scholar 

  42. Danieli, C., Campbell, D.K., and Flach, S., Intermittent Many-Body Dynamics at Equilibrium, Phys. Rev. E, 2017, vol. 95, no. 6, 060202, 5 pp.

    Google Scholar 

  43. Mithun, Th., Kati, Y., Danieli, C., and Flach, S., Weakly Nonergodic Dynamics in the Gross–Pitaevskii Lattice, Phys. Rev. Lett., 2018, vol. 120, no. 18, 184101, 6 pp.

    Google Scholar 

  44. Carati, A. and Galgani, L., On the Specific Heat of the Fermi–Pasta–Ulam Systems and Their Glassy Behavior, J. Stat. Phys., 1999, vol. 94, nos. 5–6, pp. 859–869.

    Article  MATH  Google Scholar 

  45. Carati, A. and Galgani, L., Metastability in Specific-Heat Measurements: Simulations with the FPU model, Europhys. Lett., 2006, vol. 75, no. 4, pp. 528–534.

    Article  Google Scholar 

  46. Carati, A., Galgani, L., and Pozzi, B., Lévy Flights in Landau–Teller Model of Molecular Collision, Phys. Rev. Lett., 2003, vol. 90, no. 1, 010601, 4 pp.

    Google Scholar 

  47. Kozlov, V.V., Gibbs Ensembles, Equidistribution of the Energy of Sympathetic Oscillators and Statistical Models of Thermostat, Regul. Chaotic Dyn., 2008, vol. 13, no. 3, pp. 141–154.

    MATH  Google Scholar 

  48. Kozlov, V.V., Thermal Equilibrium in the Sense of Gibbs and Poincaré, Izhevsk: R&C Dynamics, Institute of Computer Science, 2002 (Russian).

    Google Scholar 

  49. Kozlov, V.V., On Justification of Gibbs Distribution, Regul. Chaotic Dyn., 2002, vol. 7, no. 1, pp. 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  50. Kozlov, V.V. and Treshchev, D. V., Weak Convergence of Solutions of the Liouville Equation for Nonlinear Hamiltonian Systems, Theoret. and Math. Phys., 2003, vol. 134, no. 3, pp. 339–350; see also: Teoret. Mat. Fiz., 2003, vol. 134, no. 3, pp. 388–400.

    Article  MathSciNet  MATH  Google Scholar 

  51. Ponno, A., A Theorem on the Equilibrium Thermodynamics of Hamiltonian Systems, Phys. A, 2006, vol. 359, pp. 162–176.

    Article  MathSciNet  Google Scholar 

  52. Tsallis, C., Possible Generalization of Boltzmann–Gibbs Statistics, J. Stat. Phys., 1998, vol. 52, nos. 1–2, pp. 479–487.

    MathSciNet  MATH  Google Scholar 

  53. Carati, A., On the Definition of Temperature Using Time-Averages, Phys. A, 2006, vol. 369, no. 2, pp. 417–431.

    Article  Google Scholar 

  54. Fucito, E., Marchesoni, F., Marinari, E., Parisi, G., Peliti, L., Ruffo, S., and Vulpiani, A., Approach to Equilibrium in a Chain of Nonlinear Oscillators, J. Phys., 1982, vol. 43, no. 5, pp. 707–713.

    Article  MathSciNet  Google Scholar 

  55. Gangemi, F., Carati, A., Galgani, L., Gangemi, R., and Maiocchi, A., Agreement of Classical Kubo Theory with the Infrared Dispersion Curves n(ω) of Ionic Crystals, Europhys. Lett., 2015, vol. 110, no. 4, 47003, 11 pp.

    Google Scholar 

  56. Carati, A., Galgani, L., Maiocchi, A., Gangemi, F., and Maiocchi, R., Classical Infrared Spectra of Ionic Crystals and Their Relevance for Statistical Mechanics, Phys. A, 2018, vol. 506, pp. 1–10.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Carati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carati, A., Galgani, L., Maiocchi, A. et al. The FPU Problem as a Statistical-mechanical Counterpart of the KAM Problem, and Its Relevance for the Foundations of Physics. Regul. Chaot. Dyn. 23, 704–719 (2018). https://doi.org/10.1134/S1560354718060060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354718060060

Keywords

MSC2010 numbers

Navigation