Skip to main content
Log in

Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups

  • On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1
  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with two systems from sub-Riemannian geometry. One of them is defined by a Carnot group with three generatrices and growth vector (3, 6, 14), the other is defined by two generatrices and growth vector (2, 3, 5, 8). Using a Poincaré map, the nonintegrability of the above systems in the general case is shown. In addition, particular cases are presented in which there exist additional first integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ablowitz, M. J., Ramani, A., and Segur, H., A Connection between Nonlinear Evolution Equations and Ordinary Differential Equations of P-type: 1, J. Math. Phys., 1980, vol. 21, no. 4, pp. 715–721.

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrachev, A.A. and Sachkov, Yu.L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., vol. 87, Berlin: Springer, 2004.

    Book  MATH  Google Scholar 

  3. Agrachev, A.A. and Sachkov, Yu. L., An Intrinsic Approach to the Control of Rolling Bodies: 1, in Proc. of the 38th IEEE Conf. on Decision and Control (Phoenix,Ariz., Dec 1999): Vol. 1, pp. 431–435.

  4. Ardentov, A.A. and Sachkov, Yu. L., Solution to Euler’s Elastic Problem, Autom. Remote Control, 2009, vol. 70, no. 4, pp. 633–643; see also: Avtomatika i Telemekhanika, 2009, no. 4, pp. 78–88.

    Article  MathSciNet  MATH  Google Scholar 

  5. Borisov, A. V., Mamaev, I. S., and Treschev, D.V., Rolling of a Rigid Body without Slipping and Spinning: Kinematics and Dynamics, J. Appl. Nonlinear Dyn., 2013, vol. 2, no. 2, pp. 161–173.

    Article  MATH  Google Scholar 

  6. Carnegie, A. and Percival, I.C., Regular and Chaotic Motion in Some Quartic Potentials, J. Phys. A, 1984, vol. 17, no. 4, pp. 801–813.

    Article  MathSciNet  MATH  Google Scholar 

  7. Dahlqvist, P. and Russberg, G., Existence of Stable Orbits in the x 2 y 2 Potential, Phys. Rev. Lett., 1990, vol. 65, no. 23, pp. 2837–2838.

    Article  MathSciNet  MATH  Google Scholar 

  8. Dorizzi, B., Grammaticos, B., Ramani, A., and Winternitz, P., Integrable Hamiltonian Systems with Velocity-Dependent Potentials, J. Math. Phys., 1985, vol. 26, no. 12, pp. 3070–3079.

    Article  MathSciNet  Google Scholar 

  9. Dovbysh, S. A. and Borisov, A.V., Nonintegrability of the Classical Homogeneous Three-Component Yang–Mills Field, in Numerical Modelling in the Problems of Mechanics, Moscow: Izd. Mosk. Uiver., 1991, pp. 157–166.

    Google Scholar 

  10. Grammaticos, B., Dorizzi, B., and Ramani, A., Integrability of Hamiltonians with Third- and Fourth- Degree Polynomial Potentials, J. Math. Phys., 1983, vol. 24, no. 9, pp. 2289–2295.

    Article  MathSciNet  MATH  Google Scholar 

  11. Hermes, H., Nilpotent Approximations of Control Systems and Distributions, SIAM J. Control Optim., 1986, vol. 24, no. 4, pp. 731–736.

    Article  MathSciNet  MATH  Google Scholar 

  12. Jaroensutasinee, K. and Rowlands, G., Stability Analysis of x = ±y Periodic Orbits in a 1/2(Qxy)2 Potential, J. Phys. A, 1994, vol. 27, no. 4, pp. 1163–1178.

    Article  MathSciNet  MATH  Google Scholar 

  13. Jung, Ch. and Scholz, H.-J., Chaotic Scattering off the Magnetic Dipole, J. Phys. A, 1988, vol. 21, no. 10, pp. 2301–2311.

    Article  MathSciNet  MATH  Google Scholar 

  14. Jurdjevic, V., Geometric control theory, Cambridge: Cambridge Univ. Press, 1997.

    MATH  Google Scholar 

  15. Kamchatnov, A.M. and Sokolov, V. V., Nonlinear Waves in Two-Component Bose–Einstein Condensates: Manakov System and Kowalevski Equations, Phys. Rev. A, 2015, vol. 91, no. 4, 043621, 11 pp.

    Article  Google Scholar 

  16. Kozlov, V.V., Symmetries, Topology and Resonances in Hamiltonian Mechanics, Ergeb. Math. Grenzgeb. (3), vol. 31, Berlin: Springer, 1996.

    Book  MATH  Google Scholar 

  17. Kozlov, V.V., Canonical Gibbs Distribution and Thermodynamics of Mechanical Systems with a Finite Number of Degrees of Freedom, Regul. Chaotic Dyn., 1999, vol. 4, no. 2, pp. 44–54.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kozlov, V.V., Dynamical Systems 10: General Theory of Vortices, Encyclopaedia Math. Sci., vol. 67, Berlin: Springer, 2003.

    Google Scholar 

  19. Kozlov, V.V., Polynomial Conservation Laws for the Lorentz and the Boltzmann–Gibbs Gases, Russian Math. Surveys, 2016, vol. 71, no. 2, pp. 253–290; see also: Uspekhi Mat. Nauk, 2016, vol. 71, no. 2(428), pp. 81–120.

    Article  MathSciNet  MATH  Google Scholar 

  20. Maciejewski, A. J. and Przybylska, M., Darboux Points and Integrability of Hamiltonian Systems with Homogeneous Polynomial Potential, J. Math. Phys., 2005, vol. 46, no. 6, 062901, 33 pp.

    Article  MathSciNet  MATH  Google Scholar 

  21. Marcinek, R., Pollak, E., and Zakrzewski, J., Yang–Mills Classical Mechanics Revisited, Phys. Lett. B, 1994, vol. 327, nos. 1–2, pp. 67–69.

    Article  MathSciNet  Google Scholar 

  22. Marikhin, V.G. and Sokolov, V. V., Separation of Variables on a Non-Hyperelliptic Curve, Regul. Chaotic Dyn., 2005, vol. 10, no. 1, pp. 59–70.

    Article  MathSciNet  MATH  Google Scholar 

  23. Martens, C. C., Waterland, R. L., and Reinhardt, W.P., Classical, Semiclassical, and Quantum Mechanics of a Globally Chaotic System: Integrability in the Adiabatic Approximation, J. Chem. Phys., 1989, vol. 90, no. 4, pp. 2328–2337.

    Article  MathSciNet  Google Scholar 

  24. Matinyan, S.G., Savvidi, G.K., and Ter-Arutyunyan-Savvidi, N.G., Classical Yang–Mills Mechanics. Nonlinear Color Oscillations, JETP, 1981, vol. 53, no. 3, pp. 421–425; see also: Zh. Èksper. Teoret. Fiz., 1981, vol. 80, no. 3, pp. 830–838.

    MathSciNet  Google Scholar 

  25. Montgomery, R., A Tour of Subriemannian Geometries, Their Geodesics and Applications, Math. Surveys Monogr., vol. 91, Providence, R.I.: AMS, 2002.

    MATH  Google Scholar 

  26. Montgomery, R., Shapiro, M., and Stolin, A., A Nonintegrable Sub-Riemannian Geodesic Flow on a Carnot Group, J. Dynam. Control Systems, 1997, vol. 3, no. 4, pp. 519–530.

    MathSciNet  MATH  Google Scholar 

  27. Myasnichenko, O., Nilpotent (3, 6) Sub-Riemannian Problem, J. Dynam. Control Systems, 2002, vol. 8, no. 4, pp. 573–597.

    Article  MathSciNet  MATH  Google Scholar 

  28. Nikolaevskii, E. S. and Shur, L. N., Nonintegrability of the Classical Yang–Mills Fields, JETP Lett., 1982, vol. 36, no. 5, pp. 218–221; see also: Pis’ma v Zh. Èksper. Teoret. Fiz., 1982, vol. 36, no. 5, pp. 176–179.

    Google Scholar 

  29. Nikolaevskii, E. S. and Shchur, L. N., The Nonintegrability of the Classical Yang–Mills Equations, Sov. Phys. JETP, 1983, vol. 58, no. 1, pp. 1–7; see also: Zh. Eksp. Teor. Fiz., 1983, vol. 85, no. 1, pp. 3–13.

    MathSciNet  Google Scholar 

  30. Ott, E., Grebogi, C., and Yorke, J.A., Controlling Chaos, Phys. Rev. Lett., 1990, vol. 64, no. 11, pp. 1196–1199.

    Article  MathSciNet  MATH  Google Scholar 

  31. Sachkov, Yu. L., An Exponential Mapping in the Generalized Dido Problem, Sb. Math., 2003, vol. 194, nos. 9–10, pp. 1331–1359; see also: Mat. Sb., 2003, vol. 194, no. 9, pp. 63–90.

    Article  MathSciNet  MATH  Google Scholar 

  32. Sachkov, Yu., Sub-Riemannian Geodesics on the Free Carnot Group with the Growth Vector (2, 3, 5, 8), arXiv:1404.7752 (2014).

    Google Scholar 

  33. Savvidy, G.K., The Yang–Mills Classical Mechanics As a Kolmogorov K-System, Phys. Lett. B, 1983, vol. 130, no. 5, pp. 303–307.

    Article  MathSciNet  Google Scholar 

  34. Sohos, G., Bountis, T., and Polymilis, H., Is the Hamiltonian \(H = {{\left( {{{\dot x}^2} + {{\dot y}^2} + {x^2}{y^2}} \right)} \mathord{\left/ {\vphantom {{\left( {{{\dot x}^2} + {{\dot y}^2} + {x^2}{y^2}} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}\) Completely Chaotic?, Nuovo Cimento B (11), 1989, vol. 104, no. 3, pp 339–352.

    Article  MathSciNet  Google Scholar 

  35. Taimanov, I.A., Integrable Geodesic Flows of Nonholonomic Metrics, J. Dynam. Control Systems, 1997, vol. 3, no. 1, pp. 129–147.

    Article  MathSciNet  MATH  Google Scholar 

  36. Vershik, A. M. and Gershkovich, V.Ya., Nonholonomic Dynamical Systems, Geometry of Distributions and Variational Problems, in Dynamical Systems 7: Integrable Systems, Nonholonomic Dynamical Systems, V. I. Arnol’d, S.P. Novikov (Eds.), Encyclopaedia Math. Sci., vol. 16, Berlin: Springer, 1994, pp. 1–81.

    Google Scholar 

  37. Yoshida, H., A Criterion for the Non-Existence of an Additional Integral in Hamiltonian Systems with a Homogeneous Potential, Phys. D, 1987, vol. 29, nos. 1–2, pp. 128–142.

    Article  MathSciNet  MATH  Google Scholar 

  38. Ziglin, S. L., Bifurcation of Solutions and the Nonexistence of First Integrals in HamiltonianMechanics: 2, Funct. Anal. Appl., 1983, vol. 17, no. 1, pp. 6–17; see also: Funktsional. Anal. i Prilozhen., 1983, vol. 17, no. 1, pp. 8–23.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan A. Bizyaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bizyaev, I.A., Borisov, A.V., Kilin, A.A. et al. Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups. Regul. Chaot. Dyn. 21, 759–774 (2016). https://doi.org/10.1134/S1560354716060125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354716060125

Keywords

MSC2010 numbers

Navigation