Skip to main content
Log in

Knauf’s degree and monodromy in planar potential scattering

  • On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1
  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We consider Hamiltonian systems on (T*ℝ2, dqdp) defined by a Hamiltonian function H of the “classical” form H = p 2/2 + V(q). A reasonable decay assumption V(q) → 0, ‖q‖ → ∞, allows one to compare a given distribution of initial conditions at t = −∞ with their final distribution at t = +∞. To describe this Knauf introduced a topological invariant deg(E), which, for a nontrapping energy E > 0, is given by the degree of the scattering map. For rotationally symmetric potentials V(q) = W(‖q‖), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf’s degree deg(E) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg(E), which appears when the nontrapping energy E goes from low to high values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bates, L. and Cushman, R., Scattering Monodromy and the A 1 Singularity, Cent. Eur. J. Math., 2007, vol. 5, no. 3, pp. 429–451.

    Article  MathSciNet  MATH  Google Scholar 

  2. Born, M., Zur Quantenmechanik der Stoßvorgänge, Z. Physik, 1926, vol. 37, no. 12, pp. 863–867.

    Article  MathSciNet  MATH  Google Scholar 

  3. Cook, J.M., Banach Algebras and Asymptotic Mechanics, in Cargèse Lectures in Theoretical Physics: Application of Mathematics to Problems in Theoretical Physics (Cargèse, 1965): Vol. 6, New York: Gordon and Breach, 1967, pp. 209–245.

    Google Scholar 

  4. Dereziński, J. and Gérard, Ch., Scattering Theory of Classical and Quantum n-Particle Systems, Berlin: Springer, 1997.

    Book  MATH  Google Scholar 

  5. Duistermaat, J. J., On Global Action–Angle Coordinates, Comm. Pure Appl. Math., 1980, vol. 33, no. 6, pp. 687–706.

    Article  MathSciNet  MATH  Google Scholar 

  6. Dullin, H. and Waalkens, H., Nonuniqueness of the Phase Shift in Central Scattering due to Monodromy, Phys. Rev. Lett., 2008, vol. 101, no. 7, 070405, 4 pp.

    Article  MATH  Google Scholar 

  7. Efstathiou, K., Giacobbe, A., Mardešić, P. and Sugny, D., Rotation Forms and Local Hamiltonian Monodromy, arXiv:1608.01579 (2016).

    Google Scholar 

  8. Efstathiou, K. and Martynchuk, N., Monodromy of Hamiltonian Systems with Complexity 1 Torus Actions, J. Geom. Phys., 2016 (in press).

    Google Scholar 

  9. Herbst, I.W., Classical Scattering with Long Range Forces, Comm. Math. Phys., 1974, vol. 35, no. 3, pp. 193–214.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hunziker, W., The S-Matrix in Classical Mechanics, Comm. Math. Phys., 1968, vol. 8, no. 4, pp. 282–299.

    Article  MathSciNet  MATH  Google Scholar 

  11. Knauf, A., Qualitative Aspects of Classical Potential Scattering, Regul. Chaotic Dyn., 1999, vol. 4, no. 1, pp. 3–22.

    Article  MathSciNet  MATH  Google Scholar 

  12. Knauf, A., Mathematische Physik: Klassische Mechanik, Springer-Lehrbuch Masterclass, Berlin: Springer, 2011.

    Google Scholar 

  13. Knauf, A. and Krapf, M., The Non-Trapping Degree of Scattering, Nonlinearity, 2008, vol. 21, no. 9, pp. 2023–2041.

    Article  MathSciNet  MATH  Google Scholar 

  14. Simon, B., Wave Operators for Classical Particle Scattering, Comm. Math. Phys., 1971, vol. 23, no. 1, pp. 37–48.

    Article  MathSciNet  MATH  Google Scholar 

  15. Turaev, D. and Rom-Kedar, V., Elliptic islands appearing in near-ergodic flows, Nonlinearity, 1998, vol. 11, no. 3, pp. 575–600.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Martynchuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynchuk, N., Waalkens, H. Knauf’s degree and monodromy in planar potential scattering. Regul. Chaot. Dyn. 21, 697–706 (2016). https://doi.org/10.1134/S1560354716060095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354716060095

Keywords

MSC2010 numbers

Navigation