Skip to main content
Log in

On the orbital stability of planar periodic motions of a rigid body in the Bobylev-Steklov case

Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We deal with the problem of orbital stability of pendulum-like periodic motions of a heavy rigid body with a fixed point. We suppose that a mass geometry corresponds to the Bobylev-Steklov case. The stability problem is solved in nonlinear setting.

In the case of small amplitude oscillations and rotations with large angular velocities the small parameter can be introduced and the problem can be investigated analytically.

In the case of unspecified oscillation amplitude or rotational angular velocity the problem is reduced to analysis of stability of a fixed point of the symplectic map generated by the equations of the perturbed motion. The coefficients of the symplectic map are determined numerically. Rigorous results on the orbital stability or instability of unperturbed motion are obtained by analyzing these coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Irtegov, V. D., The Stability of the Pendulum-Like Oscillations of a Kovalevskaya Gyroscope, Tr. Kazan. Aviats. Inst., 1968, vol. 97, pp. 38–40 (Russian).

    Google Scholar 

  2. Bryum, A. Z., A Study of Orbital Stability by Means of First Integrals, Prikl. Mat. Mekh., 1989, vol. 53, no. 6, pp. 873–879 [J. Appl. Math. Mech., 1989, vol. 53, no. 6, pp. 689–695].

    MathSciNet  Google Scholar 

  3. Markeev, A.P., On the Stability of the Planar Motions of a Rigid Body in the Kovalevskaya Case, Prikl. Mat. Mekh., 2001, vol. 65, no. 1, pp. 51–58 [J. Appl. Math. Mech., 2001, vol. 65, no. 1, pp. 47–54].

    MathSciNet  Google Scholar 

  4. Markeev, A.P., Medvedev, S.V., and Chekhovskaya, T. N., To the Problem of Stability of Pendulum-like Vibrations of a Rigid Body in Kovalevskaya’s Case, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2003, vol. 1, pp. 3–9 [Mech. Solids, 2003, vol. 38, no. 1, pp. 1–6].

    Google Scholar 

  5. Markeev, A.P., On the Identity Resonance in a Particular Case of the problem of Stability of Periodic Motions of a Rigid Body, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2003, vol. 3, pp. 32–37 [Mech. Solids, 2003, vol. 38, no. 3, pp. 22–26].

    Google Scholar 

  6. Markeev, A.P., The Pendulum-Like Motions of a Rigid Body in the Goryachev-Chaplygin Case, Prikl. Mat. Mekh., 2004, vol. 68, no. 2, pp. 282–293 [J. Appl. Math. Mech., 2004, vol. 68, no. 2, pp. 249–258].

    MathSciNet  MATH  Google Scholar 

  7. Alekhin, A.K., On the Stability of Plane Motions of a Heavy Axially Symmetric Rigid Body, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2006, vol. 4, pp. 56–62 [Mech. Solids, 2006, vol. 41, no. 4, pp. 40–45].

    Google Scholar 

  8. Bardin, B. S., Stability Problem for Pendulum-Type Motions of a Rigid Body in the Goryachev-Chaplygin Case, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2007, vol. 2, pp. 14–21 [Mech. Solids, 2007, vol. 42, vol. 2, pp. 177–183].

    Google Scholar 

  9. Bardin, B. S., On Orbital Stability of Pendulum-Like Motions of a Rigid Body in the Bobylev-Steklov Case, Regul. Chaotic Dyn., 2010, vol. 15. no. 6, pp. 704–716.

    Article  MathSciNet  MATH  Google Scholar 

  10. Bardin, B. S. and Savin, A. A., On Orbital Stability Pendulum-Like Oscillations and Rotation of Symmetric Rigid Body with a Fixed Point, Regul. Chaotic Dyn., 2012, vol. 17. nos. 3–4, pp. 243–257.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Topology and Stability of Integrable Systems, Uspekhi Mat. Nauk, 2010, vol. 65, no. 2, pp. 71–132 [Russian Math. Surveys, 2010, vol. 65, no. 2, pp. 259–318].

    Article  MathSciNet  Google Scholar 

  12. Bobylev, D.N., On a Particular Solution of the Differential Equations of a Heavy Rigid Body Rotation Around of a Fixed Point, Tr. Fiz. Obshch. Lyubitelei Yestestv., 1896, vol. 8, no. 2, pp. 21–25 (Russian).

    Google Scholar 

  13. Steklov, V. A., A Case of Motion of a Rigid Body with a Fixed Point, Tr. Fiz. Obshch. Lyubitelei Yestestv., 1896, vol. 8, no. 2, pp. 19–21 (Russian).

    Google Scholar 

  14. Kuzmin, P.A., Particular Cases of Motion of a Heavy Rigid Body About a Fixed Point (in Works of Russian Authors), Tr. Kazan. Aviats. Inst., 1953, vol. 27, pp. 91–121 (Russian).

    MathSciNet  Google Scholar 

  15. Dokshevich, A. I., Solutions in a Finite Form of the Euler-Poisson Equations, Kiev: Naukova Dumka, 1992 (Russian).

    Google Scholar 

  16. Borisov, A.V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, Moscow-Izhevsk: Institute of Computer Science, 2005 (Russian).

    MATH  Google Scholar 

  17. Akhiezer, N. I., Elements of the Theory of Elliptic Functions, 2nd ed., Moscow: Nauka, 1970 [Providence, RI: AMS, 1990].

    Google Scholar 

  18. Markeev, A.P., Libration Points in Celestial Mechanics and Space Dynamics, Moscow: Nauka, 1978 (Russian).

    Google Scholar 

  19. Malkin, I.G., Theory of Stability of Motion, 2nd ed., Moscow: Nauka, 1966 (Russian).

    MATH  Google Scholar 

  20. Gradshteyn, I. S. and Ryzhik, I.M., Table of Integrals, Series, and Products, Moscow: Fizmatlit, 1963 [6th ed., San Diego, CA: Acad. Press, 2000].

    Google Scholar 

  21. Yakubovich, V.A. and Starzhinskii, V.M., Parametric Resonance in Linear Systems, Moscow: Nauka, 1987 (Russian).

    MATH  Google Scholar 

  22. Markeev, A. P., Linear Hamiltonian Systems and Some Problems of Stability of the Satellite Center of Mass, Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2009 (Russian).

    Google Scholar 

  23. Birkhoff, G.D., Dynamical Systems, Amer. Math. Soc. Colloq. Publ., vol. 9, Providence, R. I.: AMS, 1966.

    MATH  Google Scholar 

  24. Giacaglia, G.E.O., Perturbation Methods in Non-Linear Systems, New York: Springer, 1972.

    Book  MATH  Google Scholar 

  25. Ivanov, A.P. and Sokol’skii, A. G., On the Stability of a Nonautonomous Hamiltonian System under a Parametric Resonance of Essential Type, Prikl. Mat. Mekh., 1980, vol. 44, no. 6, pp. 963–970 [J. Appl. Math. Mech., 1980, vol. 44, no. 6, pp. 687–691].

    MathSciNet  Google Scholar 

  26. Arnol’d, V. I., Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics, Uspekhi Mat. Nauk, 1963, vol. 18, no. 6(114), pp. 91–192 [Russian Math. Surveys, 1963, vol. 18, no. 6, pp. 85–191].

    Google Scholar 

  27. Moser, J., Lectures on Hamiltonian Systems, Mem. Amer. Math. Soc., vol. 81, Providence, RI: AMS, 1968.

    Google Scholar 

  28. Markeev, A.P., Stability of Equilibrium States of Hamiltonian Systems: A Method of Investigation, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2004, vol. 39, no. 6, pp. 3–12 [Mech. Solids, 2004, vol. 39, no. 6, pp. 1–8].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Bardin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardin, B.S., Rudenko, T.V. & Savin, A.A. On the orbital stability of planar periodic motions of a rigid body in the Bobylev-Steklov case. Regul. Chaot. Dyn. 17, 533–546 (2012). https://doi.org/10.1134/S1560354712060056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354712060056

MSC2010 numbers

Keywords

Navigation