Skip to main content
Log in

Molten salt ionic liquid-assisted synthesis of nano-structured poly(amide imide)s based on 4,4′-methylenebis(3-chloro-2,6-diethyl trimellit imidobenzene) via microwave process as an environmentally friendly methodology

  • Polycondensation
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

In this paper, for the first time, 4,4′-methylene-bis(3-chloro-2,6-diethyl trimellit imidobenzene) was prepared by the condensation reaction of 4,4′-methylene-bis(3-chloro-2,6-diethylaniline) and trimellitic anhydride. A series of novel poly(amide imide)s was prepared by the direct polycondensation of the synthesized diimide diacid and various commercial diamines using tetra-n-butylammonium bromide and triphenyl phosphite as a condensing agent under microwave irradiation. Tetra-n-butylammonium bromide acts both as a solvent and a catalyst to mediate clean polymerization reactions to yield the desired polymers. The obtained polymers were characterized with FTIR, 1H NMR, X-ray diffraction, field emission scanning electron microscopy, elemental and thermogravimetric analysis. The poly(amide imide)s were generally soluble in polar organic solvents, such as N,N′-dimethyl acetamide, N,N′-dimethylformamide, N-methyl-2-pyrrolidone and sulfuric acid at room temperature, and are insoluble in methylene chloride, cyclohexane and water. Morphology probes showed these macromolecules were non-crystalline and nano-structured polymers. The effect of ultrasonic irradiation on the surface morphology of polymers was studied and the results demonstrated that the morphology of macromolecules after ultrasonication became more homogenous than it is before ultrasonic radiation. On the basis of thermogravimetric analysis data, such polymers are thermally stable and can be classified as self-extinguishing polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Tucker, Org. Process Res. Dev. 14, 328 (2010).

    Article  CAS  Google Scholar 

  2. A. Sosnik, G. Gotelli, and G. A. Abraham, Prog. Polym. Sci. 36, 1050 (2011).

    Article  CAS  Google Scholar 

  3. T. Erdmenger, C. Guerrero-Sanchez, J. Vitz, R. Hoogenboom, and U. S. Schubert, Chem. Soc. Rev. 39, 3317 (2010).

    Article  CAS  Google Scholar 

  4. B. L. Hayes, Microwave Synthesis: Chemistry at the Speed of Light (CEM, Matthews, 2002).

    Google Scholar 

  5. J. P. Tierney and P. Lidstrom, Microwave Assisted Organic Chemistry (Taylor and Francis, Abingdon, 2004).

    Google Scholar 

  6. K. Kempe, R. Becer, and U. Schubert, Macromolecules 44, 5825 (2011).

    Article  CAS  Google Scholar 

  7. C. O. Kappe and A. Stadler, Microwaves in Organic and Medicinal Chemistry (Wiley-VCH, Weinheim, 2005).

    Book  Google Scholar 

  8. R. J. Giguere, T. L. Bray, S. M. Duncan, and G. Majetich, Tetrahedron Lett. 27, 4945 (1986).

    Article  CAS  Google Scholar 

  9. R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, and J. Rousell, Tetrahedron Lett. 27, 279 (1986).

    Article  CAS  Google Scholar 

  10. C. O. Kappe, Angew. Chem., Int. Ed. Engl. 43, 6250 (2004).

    Article  CAS  Google Scholar 

  11. P. Wasserscheid and T. Welton, Ionic liquids in Synthesis (Wiley-VCH, Weinheim, 2008).

    Google Scholar 

  12. Ionic Liquids in Polymer Systems: Solvents, Additives, and Novel Applications, Ed. by C. S. Brazel and R. D. Rogers, ACS Symp. Ser., Vol. 913 (2005).

    Google Scholar 

  13. S. Mallakpour and Z. Rafiee, Prog. Polym. Sci. 36, 1754 (2011).

    Article  CAS  Google Scholar 

  14. M. Koel, Ionic Liquids in Chemical Analysis (CRC, Boca Raton, 2009).

    Google Scholar 

  15. K. Binnemans, Chem. Rev. 107, 2592 (2007).

    Article  CAS  Google Scholar 

  16. M. Antonietti, D. Kuang, B. Smarsly, and Y. Zhou, Angew. Chem., Int. Ed. Engl. 43, 4988 (2004).

    Article  CAS  Google Scholar 

  17. S. Ding, M. Radosz, and Y. Shen, Macromolecules 38, 5921 (2005).

    Article  CAS  Google Scholar 

  18. P. Kubisa, Prog. Polym. Sci. 34, 1333 (2009).

    Article  CAS  Google Scholar 

  19. J. Durand, E. Teuma, and M. Gomez, C. R. Acad. Sci., Chim. 10, 152 (2007).

    Article  CAS  Google Scholar 

  20. Y. Gu and G. Li, Adv. Synth. Catal. 351, 817 (2009).

    Article  CAS  Google Scholar 

  21. T. Ueki and M. Watanabe, Macromolecules 41, 3739 (2008).

    Article  CAS  Google Scholar 

  22. J. Lu, F. Yan, and J. Texter, Prog. Polym. Sci. 34, 431 (2009).

    Article  CAS  Google Scholar 

  23. S. Mallakpour and J. Rafiee, J. Polym. Environ. 19, 447 (2011).

    Article  CAS  Google Scholar 

  24. X. S. Li, Z. M. Xia, Z. Y. Chen, K. F. Yan, G. Li, and H. J. Wu, J. Chem. Eng. Data 55, 2180 (2010).

    Article  CAS  Google Scholar 

  25. S. Mallakpour and H. Yousefian, Polym. Bull. (Berlin) 60, 191 (2008).

    Article  CAS  Google Scholar 

  26. S. Mallakpour and S. Sepehri, React. Funct. Polym. 68, 1456 (2008).

    Google Scholar 

  27. S. Mallakpour and F. Mirkarimi, Amino Acids 39, 1255 (2010).

    Article  CAS  Google Scholar 

  28. K. Ayesha, Z. Sonia, A. Zahoor, and I. S. Muhammad, Polym. Degrad. Stab. 95, 2611 (2010).

    Article  Google Scholar 

  29. C. P. Yang, S. H. Hsiao, and M. R. Tsai, J. Polym. Res. 5, 23 (1998).

    Article  Google Scholar 

  30. D. Liaw and B. Liaw, Polymer 42, 839 (2001).

    Article  CAS  Google Scholar 

  31. K. Babooram, B. Francis, R. Bissessur, and R. Narain, Compos. Sci. Technol. 8, 617 (2008).

    Article  Google Scholar 

  32. D. Liaw and W. Chen, Polym. Degrad. Stab. 91, 1731 (2006).

    Article  CAS  Google Scholar 

  33. S. H. Hsiao, C. P. Yang, C. W. Chen, and G. S. Liou, J. Polym. Res. 38, 627 (2005).

    Google Scholar 

  34. S. Mallakpour and F. Zeraatpisheh, Colloid Polym. Sci. 289, 1055 (2011).

    Article  CAS  Google Scholar 

  35. S. Mallakpour and A. Zadehnazari, Des. Monom. Polym. 12, 589 (2009).

    Article  CAS  Google Scholar 

  36. S. Mallakpour and A. Zadehnazari, Polymer Science, Ser. B 54, 314 (2012).

    Article  CAS  Google Scholar 

  37. S. Mallakpour and M. Dinari, J. Polym. Environ. 18, 705 (2010).

    Article  CAS  Google Scholar 

  38. Encyclopedia of Nanoscience and Nanotechnology, Ed. by H. S. Nalwa (American Scientific, Ohio, 2004), p. 763.

    Google Scholar 

  39. E. Hamciuc, C. Hamciuc, A. Airinei, and M. Bruma, Angew. Makromol. Chem. 245, 105 (1997).

    Article  CAS  Google Scholar 

  40. D. W. Van Krevelen and P. J. Hoftyzer, Properties of Polymers. Their Estimation and Correlation with Chemical Structure (Elsevier, New York, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallakpour, S., Zeraatpisheh, F. Molten salt ionic liquid-assisted synthesis of nano-structured poly(amide imide)s based on 4,4′-methylenebis(3-chloro-2,6-diethyl trimellit imidobenzene) via microwave process as an environmentally friendly methodology. Polym. Sci. Ser. B 55, 271–279 (2013). https://doi.org/10.1134/S1560090413050096

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090413050096

Keywords

Navigation