Skip to main content
Log in

Synthesis and study of bismuth-containing high-silica glass by the IR spectroscopy method

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Bismuth-containing high-silica glasses (BCHSGs) based on the matrices of high-silica nanoporous glasses have been synthesized. The structure of BCHSG plates has been investigated by means of the IR spectroscopy method in the frequency range 4000–400 cm−1. The bands corresponding to vibrations of the Bi-O bonds in structural units [BiO3] and [BiO6] were found on the spectral transmission curves of the synthesized BCHSGs. Besides, peaks corresponding to the presence of the α-Bi2O3 phase in the glass were revealed. It has been established that, depending on the BCHSG thermal treatment and the bismuth concentration in glass, changes of the glass structure and formation of Bi-O-Si bonds take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujimoto, Y. and Nakatsuka, M., Infrared luminescence from bismuth-doped silica glass, Jpn. J. Appl. Phys., 2001, vol. 40, no. 3B, pp. L279–L281.

    Article  Google Scholar 

  2. Gaft, M., Reisfeld, R., Panczer, G., Boulon, G., Saraidarov, T., and Erlish, S., The luminescence of Bi, Ag, and Cu in natural and synthetic barite BaSO4, Opt. Mater., 2001, vol. 16, nos. 1–2, pp. 279–290.

    Article  Google Scholar 

  3. Zhou, S., Jiang, N., Zhu, B., Yang, H., Ye, S., Lakshminarayana, G., Hao, J., and Qiu, J., Multifunctional bismuth-doped nanoporous silica glass: From bluegreen, orange, red, and white light sources to ultrabroadband infrared amplifiers, Adv. Funct. Mater., 2008, vol. 18, no. 9, pp. 1407–1413.

    Article  Google Scholar 

  4. Zhou, S., Lei, W., Jiang, N., Hao, J., Wu, E., Zeng, H., and Qiu, J., Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser, J. Mater. Chem., 2009, vol. 19, pp. 4603–4608.

    Article  Google Scholar 

  5. Firstov, S.V., Khopin, V.F., Bufetov, I.A., Firstova, E.G., Guryanov, A.N., and Dianov, E.M., Combined excitationemission spectroscopy of bismuth active centers in optical fibers, Opt. Express, 2011, vol. 19, no. 20, pp. 19551–19561.

    Article  Google Scholar 

  6. Girsova, M.A., Firstov, S.V., Anfimova, I.N., Golovina, G.F., Kurilenko, L.N., Kostyreva, T.G., Polyakova, I.G., and Antropova, T.V., High-silica glass doped with bismuth, Fiz. Khim. Stekla, Pis’ma Zh., 2012, vol. 38, no. 6, pp. 861–863.

    Google Scholar 

  7. Girsova, M.A. and Firstov, S.V., Structure and optical properties of high-silica silicate glasses doped with bismuth, in Tezisy dokladov VII Vserossiiskoi konferentsii molodykh uchenykh, aspirantov i studentov s mezhdunarodnym uchastiem po khimii i nanomaterialam “Mendeleev-2013,” Sankt-Peterburg, 2–5 aprelya 2013 (Abstracts of Papers of the Seventh All-Russian Conference of Young Scientists, Postgraduate Students, and Students with the International Participation in Chemistry and Nanomaterials “Mendeleev-2013,” St. Petersburg, Russia, April 2–5, 2013), St. Petersburg: Solo, 2013, Section 5: Physical Chemistry, pp. 121–123.

    Google Scholar 

  8. Firstov, S.V., Girsova, M.A., Dianov, E.M., and Antropova, T.V., Luminescent properties of thermoinduced active centers in quartz-like glass activated by bismuth, Glass Phys. Chem., 2014, vol. 40, no. 5, pp. 521–525.

    Article  Google Scholar 

  9. Murata, K., Fujimoto, Y., Kanabe, T., Fujita, H., and Nakatsuka, M., Bi-doped SiO2 as a new laser material for an intense laser, Fusion Eng. Des., 1999, vol. 44, nos. 1–4, pp. 437–439.

    Article  Google Scholar 

  10. Dianov, E.M., On the nature of near-IR emitting Bi centers in glass, Quantum Electronics, 2010, vol. 40, no. 4, pp. 283–285.

    Article  Google Scholar 

  11. Bufetov, I.A., Semjonov, S.L., Vel’miskin, V.V., Firstov, S.V., Bufetova, G.A., and Dianov, E.M., Optical properties of active bismuth centres in silica fibres containing no other dopants, Quantum Electronics, 2010, vol. 40, no. 7, pp. 639–641.

    Article  Google Scholar 

  12. Renne-Erny, R., Di Labio, L., and Luethy, W., A novel technique for active fibre production, Opt. Mater., 2007, vol. 29, no. 8, pp. 919–922.

    Article  Google Scholar 

  13. Bufetov, I.A., Firstov, S.V., Khopin, V.F., Medvedkov, O.I., Guryanov, A.N., and Dianov, E.M., Bi-doped fiber lasers and amplifiers for a spectral region of 1300–1470 nm, Opt. Lett., 2008, vol. 33, no. 19, pp. 2227–2229.

    Article  Google Scholar 

  14. Wu, J., Chen, D., Wu, X., and Qiu, J., Ultra-broad near-infrared emission of Bi-doped SiO2-Al2O3-GeO2 optical fibers, Chin. Opt. Lett., 2011, vol. 9, no. 7, pp. 071601-1.

    Google Scholar 

  15. Srivastava, A.M., Luminescence of divalent bismuth in M2+ BPO5 (M2+ = Ba2+, Sr2+, and Ca2+), J. Lumin., 1998, vol. 78, no. 4, pp. 239–243.

    Article  Google Scholar 

  16. Peng, M., Sprenger, B., Schmidt, M.A., Schwefel, H.G.L., and Wondraczek, L., Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: Insights into the nature of NIR-emitting bismuth centers, Opt. Express, 2010, vol. 18, no. 12, pp. 12852–12863.

    Article  Google Scholar 

  17. Khonthon, S., Morimoto, S., Arai, Y., and Ohishi, Y., Near-infrared luminescence from Bi-doped sodalime-silicate glasses, Suranaree J. Sci. Technol., 2007, vol. 14, no. 2, pp. 141–146.

    Google Scholar 

  18. Winterstein, A., Manning, S., Ebendorff-Heidepriem, H., and Wondraczek, L., Luminescence from bismuth-germanate glasses and its manipulation through oxidants, Opt. Mater. Express, 2012, vol. 2, no. 10, pp. 1320–1328.

    Article  Google Scholar 

  19. Girsova, M.A., Firstov, S.V., and Antropova, T.V., Spectral and optical properties of the bismuth-containing quartz-like glasses, J. Phys.: Conf. Ser., 2014, vol. 541, article 012022. DOI: 10.1088/1742-6596/541/1/012022.

  20. Meng, X.-G., Peng, M.-Y., Chen, D.-P., Yang, L.-Y., Jiang, X.-W., Zhu, C.-S., and Qiu, J.-R., Broadband infrared luminescence of bismuth-doped borosilicate glasses, Chin. Opt. Lett., 2005, vol. 22, no. 3, pp. 615–617.

    Google Scholar 

  21. Qiu, J., Peng, M., Ren, J., Meng, X., Jiang, X., and Zhu, C., Novel Bi-doped glasses for broadband optical amplification, J. Non-Cryst. Solids, 2008, vol. 354, nos. 12–13, pp. 1235–1239.

    Article  Google Scholar 

  22. Gmachl, C., Sivco, D.L., Colombelli, R., Capasso, F., and Cho, A.Y., Ultra-broadband semiconductor laser, Nature, 2002, vol. 415, pp. 883–887.

    Article  Google Scholar 

  23. Song, D., Zhang, J., Fang, S., Sun, W., Sathi, Z.M., Luo, Y., and Peng, G.-D., Bismuth and erbium Co-doped optical fiber for a white light fiber source, Opt. Photonics J., 2013, vol. 3, no. 2B, pp. 175–178.

    Article  Google Scholar 

  24. Dianov, E.M., Dvoyrin, V.V., Mashinsky, V.M., Umnikov, A.A., Yashkov, M.V., and Gur’yanov, A.N., CW bismuth fibre laser, Quantum Electronics, 2005, vol. 35, no. 12, pp. 1083–1084.

    Article  Google Scholar 

  25. Bufetov, I.A. and Dianov, E.M., Bi-doped fiber lasers, Laser Phys. Lett., 2009, vol. 6, no. 7, pp. 487–504.

    Article  Google Scholar 

  26. Dianov, E.M., Bismuth-doped optical fibers: A challenging active medium for near-IR lasers and optical amplifiers, Light: Sci. Appl., 2012, vol. 1, e12. www.nature.com/lsa. doi:10.1038/lsa.2012.12.

    Article  Google Scholar 

  27. Desurvire, E., Optical communications in 2025, in Proceedings of the 31st European Conference on Optical Communication (ECOC 2005), Glasgow, Scotland, September 25–29, 2005, Glasgow, 2005, vol. 1, pp. 5–6.

    Google Scholar 

  28. Ramadevudu, G., Rao, S.L.S., Shareefuddin, A.H., and Chary, M.N., FTIR and some physical properties of alkaline-earth borate glasses containing heavy metal oxides, Int. J. Eng. Sci. Technol., 2011, vol. 3, no. 9, pp. 6998–7005.

    Google Scholar 

  29. Kundu, V., Dhiman, R.L., Maan, A.S., and Goyal, D.R., Optical and spectroscopic studies of ZnO-Bi2O3-B2O3 glasses, J. Optoelectron. Adv. Mater., 2009, vol. 11, no. 11, pp. 1595–1600.

    Google Scholar 

  30. Qiao, W. and Chen, P., Investigation on the properties of Bi2O3-B2O3-BaO lead-free glass used in electronic pastes, Glass Phys. Chem., 2010, vol. 36, no. 3, pp. 304–308.

    Article  Google Scholar 

  31. Plyusnina, I.I., Infrakrasnye spektry mineralov (Infrared Spectra of Minerals), Moscow: Moscow State University, 1976.

    Google Scholar 

  32. Balachander, L., Ramadevudu, G., Shareefuddin, Md., Sayanna, R., and Venudhar, Y.C., IR analysis of borate glasses containing three alkali oxides, Sci. Asia, 2013, vol. 39, no. 3, pp. 278–283.

    Article  Google Scholar 

  33. Jeon, H.-J., Yi, S.-C., and Oh, S.-G., Preparation and antibacterial effects of Ag-SiO2 thin films by the solgel method, Biomaterials, 2003, vol. 24, no. 27, pp. 4921–4928.

    Article  Google Scholar 

  34. Kumar, R.S. and Rajkumar, P., Characterization of minerals in air dust particles in the state of Tamilnadu, India, through ftir spectroscopy, Atmos. Chem. Phys., 2013, vol. 13, no. 8, pp. 22221–22248.

    Article  Google Scholar 

  35. Ardelean, I. and Cora, S., FT-IR, Raman, and UV-VIS spectroscopic studies of copper doped 3Bi2O3 · B2O3 glass matrix, J. Mater. Sci.: Mater. Electron., 2008, vol. 19, no. 6, pp. 584–588.

    Google Scholar 

  36. Dimitriev, Y., Krupchanska, M., Ivanova, Y., and Staneva, A., Sol-gel synthesis of materials in the system Bi2O3-SiO2, J. Univ. Chem. Technol. Metall., 2010, vol. 45, no. 1, pp. 39–42.

    Google Scholar 

  37. Plyusnina, I.I., Infrakrasnye spektry silikatov (Infrared Spectra of Silicates), Moscow: Moscow State University, 1967.

    Google Scholar 

  38. Lazarev, A.N., Mirgorodskii, A.P., and Ignat’ev, I.S., Kolebatel’nye spektry slozhnykh okislov. Silikaty i ikh analogi (Vibrational Spectra of Complex Oxides: Silicates and Their Analogues), Leningrad: Nauka, 1975.

    Google Scholar 

  39. Ehasanulla, M., Srikanth, K., Rao, A.V., and Emmanuel, K.A., Spectroscopic and magnetic properties of PbO-Bi2O3-B2O3 glasses doped with FeO, RASĀYAN J. Chem., 2011, vol. 4, no. 2, pp. 343–353.

    Google Scholar 

  40. Ardelean, I. and Rusu, D., Structural investigations of some B2O3 based glasses, J. Optoelectron. Adv. Mater., 2008, vol. 10, no. 1, pp. 66–73.

    Google Scholar 

  41. Denisov, V.M., Belousova, N.V., and Denisova, L.T., Bismuth borates, Zh. Sib. Fed. Univ., Ser.: Khim., 2013, vol. 6, no. 2, pp. 132–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Girsova.

Additional information

Original Russian Text © M.A. Girsova, G.F. Golovina, L.N. Kurilenko, T.V. Antropova, 2015, published in Fizika i Khimiya Stekla.

The work is published based on the materials of the Conference on “Glass: Science and Practice” held on November 6–8, 2013 in St. Petersburg, Russia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girsova, M.A., Golovina, G.F., Kurilenko, L.N. et al. Synthesis and study of bismuth-containing high-silica glass by the IR spectroscopy method. Glass Phys Chem 41, 93–97 (2015). https://doi.org/10.1134/S1087659615010101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659615010101

Keywords

Navigation