Skip to main content
Log in

A study of the formation of Ln2 + x Me2 − x O7 − x/2 (Ln = Gd, Dy; Me = Zr, Hf) nanocrystals

  • Proceedings of the First All-Russian Conference “Sol-Gel Synthesis and Study of Inorganic Compounds, Hybrid Functional Materials, and Disperse Systems” (St. Petersburg, Russia, November 22–24, 2010)
  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

It has been established that the process of producing the Ln2 + x Me2 − x O7 − x/2 (Ln = Gd, Dy; Me = Zr, Hf) nanocrystals by calcination of hydroxides, which, in turn, have been produced by coprecipitation of metal salts, includes several stages. At the beginning, the X-ray amorphous structure of the precursors remains unchanged during dehydration; during subsequent heating to 600–700°C, nanocrystals with a disordered fluorite structure begin to be formed. An increase in the temperature above 700°C leads to an increase in the size of crystallites (coherent scattering regions). This process is accompanied by changes occurring in their local structure. In the nanocrystalline powders of Cd2Hf2O7 and Gd2Zr2O7 synthesized at 1200°C (6 h), the pyrochlore-type superstructure with the lattice parameters doubled relative to fluorite has been revealed. It has also been found that, possibly, the Dy2HfO5 sample at 1600°C (3 h) has a modulated structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pierre, A.C., Introduction to Sol-Gel Processing, Boston: Kluwer, 1998.

    Book  Google Scholar 

  2. Stanek, C.R., Atomic Scale Disorder in Fluorite and Fluorite Related Oxides, PhD Dissertation, London: 2003.

  3. Shlyakhtina, A.V., Synthesis and Properties of Conducting Oxygen Compounds of Rare-Earth Pyrochlores Family, Doctoral (Chem.) Dissertation, Novosibirsk, 2010.

  4. Xu, Q., Pan, W., Wang, J., Wan, C., Qi, L., Miao, H., Mori, K., and Torigoe, T., Rare-Earth Zirconate Ceramics with Fluorite Structure for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2006, vol. 89, no. 1, pp. 340–342.

    Article  CAS  Google Scholar 

  5. Risovany, V.D., Zakharov, A.V., Muraleva, E.M., Kosenkov, V.M., and Latypov, R.N., Dysprosium Hafnate as Absorbing Material for Control Rods, J. Nucl. Mater., 2006, vol. 355, no. 1, pp. 163–170.

    Article  CAS  Google Scholar 

  6. Sickafus, K.E., Minervini, L., Grimes, R.W., Valdez, J.A., Ishimaru, M., Li, F., McClellan, K.J., and Hartmann, T., Radiation Tolerance of Complex Oxides, Science (Washington), 2000, vol. 289, no. 5480, pp. 748–751.

    Article  CAS  Google Scholar 

  7. Subramanian, M.A., Aravamudan, G., and Subba Rao, G.V., Oxide Pyrochlores—A Review, Prog. Solid State Chem., 1983, vol. 15, no. 2, pp. 55–143.

    Article  CAS  Google Scholar 

  8. Ushakov, S.V. and Navrotsky, A., Energetics of Defect Fluorite and Pyrochlore Phases in Lanthanum and Gadolinium Hafnates, J. Am. Ceram. Soc., 2007, vol. 90, no. 4, p. 1171.

    Article  CAS  Google Scholar 

  9. Mercera, P.D.L., Van Ommen, J.G., Doesburg, E.B.M., Burggraaf, A.J., and Ross, J.R.H., Influence of Ethanol Washing of Hydrous Precursor on the Textural and Structural Properties of Zirconia, J. Mater. Sci., 1992, vol. 27, no. 18, pp. 4890–4898.

    Article  CAS  Google Scholar 

  10. Petrunin, V.F., Popov, V.V., Fedotov, A.V., et al., Regularities of Formation Nanocrystalline Compounds in Ln2O3-MeO2 Systems, in Trudy VII Vserossiiskoi konferentsii “Fizikokhimiya ul’tradispersnykh (nano-) system,” MIFI, Moscow, 2006 (Proceedings of the VII All-Russian Conference “Physical Chemistry of Ultrafine (Nano-) Systems,” Moscow Engineering Physics Institute, Moscow, 2006), pp. 98–101.

  11. Larson, A.C. and Von Dreele, R.B., General Structure Analysis System (GSAS), Los Alamos Natl. Lab. [Rep.] LA (US), 2000, LAUR 86-748.

  12. Toby, B.H., EXPGUI, a Graphical User Interface for GSAS, J. Appl. Crystallogr., 2001, vol. 34, no. 2, pp. 210–213.

    Article  CAS  Google Scholar 

  13. Belyakova, O.A., Zubavichus, Y.V., Neretin, I.S., Golub, A.S., Novikov, Yu.N., Mednikov, E.G., Vargaftik, M.N., Moiseev, I.I., and Slovokhotov, Yu.L., Atomic Structure of Nanomaterials: Combined X-Ray Diffraction and EXAFS Studies, J. Alloys Compd., 2004, vol. 382, nos. 1–2, pp. 46–53.

    Article  CAS  Google Scholar 

  14. Waseda, Y., Anomalous X-Ray Scattering for Materials Characterization: Atomic-Scale Structure Determination, Berlin: Springer, 2002.

    Google Scholar 

  15. Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Y.V., Structural Materials Science End-Station at the Kurchatov Synchrotron Radiation Source: Recent Instrumentation Upgrades and Experimental Results, Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, vol. 603, nos. 1–2, pp. 95–98.

    Article  CAS  Google Scholar 

  16. Ravel, D. and Newville, M., ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT, J. Synchrotron Radiat., 2005, vol. 12, no. 2, pp. 537–541.

    Article  CAS  Google Scholar 

  17. Henke, B.L., Gullikson, E.M., and Davis, J.C., X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50–30000 eV, At. Data Nucl. Data Tables, 1993, vol. 54, pp. 181–342.

    Article  CAS  Google Scholar 

  18. Klementiev, K.V., VIPER for Windows, J. Phys. D: Appl. Phys, 2001, vol. 34, no. 2, pp. 209–217.

    Article  Google Scholar 

  19. Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D., Real-Space Multiple-Scattering Calculation and Interpretation of X-Ray-Absorption Near-Edge Structure, Phys. Rev. B: Condens. Matter, 1998, vol. 58, no. 12, pp. 7565–7576.

    Article  CAS  Google Scholar 

  20. Minervini, L., Grimes, R.W., and Sickafus, K.E., Disorder in Pyrochlore Oxides, J. Am. Ceram. Soc., 2000, vol. 83, no. 8, pp. 1873–1878.

    Article  CAS  Google Scholar 

  21. Frenkel, A.I., Kolobov, A.V., Robinson, I.K., Cross, J.O., Maeda, Y., and Bouldin, C.E., Direct Separation of Short Range Order in Intermixed Nanocrystalline and Amorphous Phases, Phys. Rev. Lett., 2002, vol. 89, no. 28, pp. 285–503.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Popov.

Additional information

Original Russian Text © V.V. Popov, Ya.V. Zubavichus, V.F. Petrunin, A.P. Menushenkov, O.V. Kashurnikova, S.A. Korovin, R.V. Chernikov, A.A. Yaroslavtsev, 2011, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, V.V., Zubavichus, Y.V., Petrunin, V.F. et al. A study of the formation of Ln2 + x Me2 − x O7 − x/2 (Ln = Gd, Dy; Me = Zr, Hf) nanocrystals. Glass Phys Chem 37, 512–520 (2011). https://doi.org/10.1134/S1087659611050117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659611050117

Keywords

Navigation