Skip to main content
Log in

Raman and dielectric spectra of the glass and single crystal of the composition Li2Ge7O15 in the frequency range 3–1000 cm−1: II. The influence of phase separation

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The Raman spectra of Li2O · 7GeO2 glasses, which are heat treated under different conditions at temperatures near the temperature corresponding to the first exothermal peak in the DTA curve, are measured in the frequency range 20–1100 cm−1. A comparative analysis of the measured spectra with the use of the data available in the literature and the X-ray diffraction results demonstrates that the glass undergoes phase separation and that phases of compositions close to GeO2 and Li2O · 4GeO2 precipitate at the initial stage. The ordering of both phases varies significantly within the sample and, on the average, is substantially higher than that in the initial glass. This confirms the known assumptions made by researchers that crystal nuclei with a Li2O · 4GeO2 structure arise during heat treatment of lithium germanate glasses. At the phase separation stage under investigation, the phases are formed as nanoinhomogeneities that only slightly affect the transparency and, in the course of heat treatment, increase in size with a further ordering of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sigaev, V.N., Pernice, P., Aronne, A., Akimova, O.V., Stefanovich, S.Yu., and Scaglione, A., KTiOPO4 Precipitation from Potassium Titanium Phosphate Glasses, Producing Second Harmonic Generation, J. Non-Cryst. Solids, 2001, vol. 292, pp. 59–69.

    Article  CAS  Google Scholar 

  2. Sigaev, V.N., Pernice, P., Aronne, A., et al., Nano-Phased Crystallisation of Ferroelectrics from Glasses in the K2O-TiO2-P2O5 and K2O-Nb2O5-SiO2 Systems, Ferroelectrics, 2004, vol. 61, pp. 249–253.

    Article  CAS  Google Scholar 

  3. Tanaka, H., Yamamoto, M., Takahachi, Y., et al., Crystalline Phases and Second Harmonic Intensities in Potassium Niobium Silicate Crystallized Glasses, Opt. Mater., 2003, vol. 22, pp. 71–79.

    Article  CAS  Google Scholar 

  4. Lipovskii, A.A., Tagantsev, D.K., Tatarintsev, B.V., and Vetrov, A.A., The Origin of Electrooptical Sensitivity of Glassy Materials: Crystal Motifs in Glasses, J. Non-Cryst. Solids, 2003, vol. 318, pp. 268–283.

    Article  CAS  Google Scholar 

  5. Elel’man, I.S., Stepanov, S.A., Petrovskii, G.T., Zaikovskii, V.D., Ivantsov, R.D., Ivanova, O.S., Prokof’ev, D.E., Zarubina, T.V., and Kornilova, E.E., Manganese Ferrite Nanoparticles in Borate Glass and Their Influence on the Magneto-Optical Properties, Fiz. Khim. Stekla, 2005, vol. 31, no. 2, pp. 117–124 [Glass Phys. Chem. (Engl. transl.), 2005, vol. 31, no. 2, pp. 177–186].

    Google Scholar 

  6. Feofilov, S.P., Spectroscopy of Dielectric Nanocrystals Doped by Rare-Earth and Transition-Metal Ions, Fiz. Tverd. Tela, 2002, vol. 44, no. 8, pp. 1348–1355 [Phys. Solid State (Engl. transl.), 2002, vol. 44, no. 8, pp. 1407–1414].

    Google Scholar 

  7. Jain, H., Transparent Ferroelectric Glass-Ceramics, Ferroelectrics, 2004, vol. 306, pp. 111–127.

    Article  CAS  Google Scholar 

  8. Halliyal, A.G., Bhalla, A.S., Newnham, R.E., and Cross, L.E., Glass Ceramics for Piezoelectric and Pyroelectric Devices, in Glass and Glass-Ceramics, Lewis, M.H., Ed., London: Chapman and Hall, 1989, p. 272.

    Google Scholar 

  9. Ding, Zhenya., Zhao, Yixi., Wang, Wei., and Huang, Yibin., Relationship between the Spatial Distribution of Crystallites and Pyroelectric Constant in Polar BTS Glass-Ceramics, J. Non-Cryst. Solids, 1989, vol. 112, no. 3, pp. 258–262.

    Article  Google Scholar 

  10. Sigaev, V.N., Lopatina, E.V., Sarkisov, P.D., et al., Grain-Oriented Surface Crystallization of Lanthanum Borosilicate and Lanthanum Borogermanate Glasses, Mater. Sci. Eng., B., 1997, vol. 48, no. 3, pp. 254–260.

    Article  Google Scholar 

  11. Sigaev, V.N., Lotarev, S.V., Smelyanskaya, E.N., Sarkisov, P.D., Volkov, A.A., Komandin, G.A., Koltashev, V.V., and Plotnichenko, V.G., Raman and Dielectric Spectra of the Glass and Single Crystal of Li2Ge7O15 in the Frequency Range 3–1000 cm−1: I. Comparison of the Structures of the Crystal and Initial Glass, Fiz. Khim. Stekla, 2006, vol. 32, no. 3, pp. 407–415 [Glass Phys. Chem. (Engl. transl.), 2006, vol. 32, no. 3, pp. 296–303].

    Google Scholar 

  12. Pernice, P., Aronne, A., and Marotta, A., The Non-Isolthermal Devitrification of Lithium Heptagermanate Glass, Thermochim. Acta, 1992, vol. 196, pp. 1–6.

    Article  CAS  Google Scholar 

  13. Marotta, A., Pernice, P., Aronne, A., and Catauro, M., The Non-Isotermal Devitrification of Lithium Germanate Glasses, J. Therm. Anal., 1993, vol. 40, pp. 181–188.

    CAS  Google Scholar 

  14. Golubkov, V.V., Polyakova, I.G., and Shakhmatkin, B.A., Structure and Structural Transformations in Lithium Germanate Glasses, Fiz. Khim. Stekla, 1990, vol. 16, no. 4, pp. 518–528.

    CAS  Google Scholar 

  15. Vasilevskaya, T.N., Kaplyanskii, A.A., Kulinkin, A.B., and Feofilov, S.P., Luminescence of Cr3+ Impurity Ions in Li2Ge-O15 Nanocrystals and Clusters Embedded in Lithium Germanate Glasses, Fiz. Tverd. Tela, 2003, vol. 45, no. 5, pp. 914–921 [Phys. Solid State (Engl. transl.), 2003, vol. 45, no. 5, pp. 1154–1161].

    Google Scholar 

  16. Kato, Y., Yamazaki, H., and Tomozawa, M., Detection of Phase Separation by FTIR in a Liquid-Crystal-Display Substrate Aluminoborosilicate Glass, J. Am. Ceram. Soc., 2001, vol. 84, no. 11, pp. 2111–2116.

    CAS  Google Scholar 

  17. Fujita, S., Kato, Y., and Tomozawa, M., IR Peak Shift Due to Phase Separation of Na2O-SiO2 System Glasses, J. Non-Cryst. Solids, 2003, vol. 328, pp. 64–70.

    Article  CAS  Google Scholar 

  18. Wang, Yo., Tanaka, K., Nakaoka, T., and Murase, K., Evidence of Nanophase Separation in Ge-Se Glasses, J. Non-Cryst. Solids, 2002, vols. 299–302, pp. 963–967.

    Article  Google Scholar 

  19. Aronne, A., Pernice, P., and Catauro, M., FT Infrared Spectroscopy of the Devitrification of Lithium Germanate Glasses, Phys. Chem. Glasses, 1996, vol. 37, no. 4, pp. 134–137.

    CAS  Google Scholar 

  20. Elektronnava baza rentgenogramm (Powder Diftraction File), JCPDS no. 37-1363.

  21. Pilla, O., Fontana, A., Capom, S., et al., Vibrational Dynamics of “Strong” Glasses: The Case of v-SiO2 and v-GeO2, J. Non-Cryst. Solids, 2003, vol. 322, pp. 53–57.

    Article  CAS  Google Scholar 

  22. Furukawa, T. and White, W.B., Raman Spectroscopic Investigation of the Structure and Crystallization of Binary Alkali Germanate Glasses, J. Mater. Sci., 1980, vol. 15, pp. 1648–1662.

    Article  CAS  Google Scholar 

  23. Verweij, H. and Buster, J.H.J.M., The Structure of Lithium, Sodium and Potassium Germanate Glasses, Studied by Raman Scattering, J. Non-Cryst. Solids, 1979, vol. 34, pp. 81–99.

    Article  CAS  Google Scholar 

  24. Henderson, G.S. and Wang, H.M., Germanium Coordination and the Germanate Anomaly, Eur. J. Mineral., 2002, vol. 14, pp. 733–744.

    Article  CAS  Google Scholar 

  25. Vollenkle, H., Wittman, A., and Nowotny, H., Monatsh. Chem., 1970, vol. 101, p. 46.

    Article  Google Scholar 

  26. Pernice, P., Aronne, A., Marotta, A., Crystallizing Phases and Kinetics of Crystal Growth in Li2O · 19GeO2 Glass, J. Mater. Sci. Lett., 1992, pp. 427–429.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.N. Sigaev, S.V. Lotarev, E.N. Smelyanskaya, P.D. Sarkisov, A.A. Volkov, G.A. Komandin, V.V. Koltashev, V.G. Plotnichenko, 2006, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigaev, V.N., Lotarev, S.V., Smelyanskaya, E.N. et al. Raman and dielectric spectra of the glass and single crystal of the composition Li2Ge7O15 in the frequency range 3–1000 cm−1: II. The influence of phase separation. Glass Phys Chem 32, 497–504 (2006). https://doi.org/10.1134/S1087659606050014

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659606050014

Keywords

Navigation