Skip to main content
Log in

Specific features of sintering of HfB2-based refractory ceramic by hybrid spark plasma sintering

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Systems based on refractory ZrB2 and HfB2 powders are the most promising for fabrication of newgeneration aircraft parts working under extreme conditions. The complexity of sintering of these powders is overcome by using the spark plasma sintering method (SPS/FAST) with additional inductive heating. The sintering of HfB2-SiC samples separately in the SPS mode or by inductive heating at 100 deg min−1 failed to provide samples with required quality. It was shown that the relative density differential for samples 100 mm in diameter, sintered in the combined-heating mode [simultaneously by inductive and spark plasma sintering (SPS)] does not exceed 2.4%. Oxidation resistance tests of the samples at temperatures T ≥ 1800°C demonstrated that further studies of the HfB2-SiC system as a material for aircraft articles are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Matovic, B. and Yano, T., Handbook of Advanced Ceramics, Shigeyuki Somiya, Ed., Oxford, 2013, chapter 3.1, pp. 225–244.

  2. Opeka, M.M., Talmy, I.G., and Zaykoski, J.A., J. Mater. Sci., 2004, vol. 39, pp. 5887–5904.

    Article  CAS  Google Scholar 

  3. Grashchenkov, D.V. and Chursova, L.V., Aviats. Mater. Tekhnol., 2012, no. S, pp. 231–242.

    Google Scholar 

  4. Chainikova, A.S., Orlova, L.A., Popovich, N.V., et al., Aviats. Mater. Tekhnol., 2014, no. 3, pp. 45–54.

    Google Scholar 

  5. Kablov, E.N., Ospennikova, O.G., and Vershkov, A.V., Trudy VIAM, 2013, no. 2, paper 01 (viam-works.ru).

    Google Scholar 

  6. Simonenko, E.P., Simonenko, N.P., Sevast’yanov, V.G., et al., Kompoz. Nanostrukt., 2011, no. 4, pp. 52–64.

    Google Scholar 

  7. Kablov, E.N., Grashchenkov, D.V., Isaeva, N.V., et al., Steklo Keram., 2012, no. 4, pp. 7–11.

    Google Scholar 

  8. Kablov, E.N., Grashchenkov, D.V., Isaeva, N.V., and Solntsev, S.S., Ross. Khim. Zh., 2010, vol. 54, no. 1, pp. 20–24.

    CAS  Google Scholar 

  9. Ghosh, D. and Subhashy, G., Handbook of Advanced Ceramics, Elsevier Inc., 2013, 2nd ed., chapter 3.1, pp. 267–299.

    Book  Google Scholar 

  10. Fahrenholtz, W. and Hilmas, G., J. Am. Ceram. Soc., 2007, vol. 90, no. 5, pp. 1347–1363.

    Article  CAS  Google Scholar 

  11. Voitovich, R.F. and Pugach, E.A., Okislenie tugoplavkikh soedinenii: Spravochnik (Oxidation of Refractory Compounds: Reference Book, Kiev: Naukova Dumka. 1968.

    Google Scholar 

  12. Kuprukhin, A.A., Optimization of the Heat Shield of Hypersonic Space Vehicles by Variation of Its Catalytic and Emission Properties, Cand. Sci. Dissertation, Moscow, 2010.

    Google Scholar 

  13. Rebillat, F., Advances in Self-Healing Ceramic Matrix Composites, Elsevier ltd., 2014, pp. 369–409.

    Book  Google Scholar 

  14. Kolovertnov, D.V., Oxidation Processes of Glass-Ceramic Composites Based on Zirconium Boride and Silicon-Containing Compounds, Cand. Sci. Dissertation, St. Petersburg, 2012.

    Google Scholar 

  15. Sevasty’anov, V.G., Simonenko, E.P., Gordeev, A N., et al., Russ. J. Inorg. Chem., 2014, vol. 59, no. 11, pp. 1298–1311.

    Article  Google Scholar 

  16. Sevasty’anov, V.G., Simonenko, E.P., Gordeev, A.N., et al., Russ. J. Inorg. Chem., 2014, vol. 59, no. 12, pp. 1361–1382.

    Article  Google Scholar 

  17. Kablov, E.N., Aviats. Mater. Tekhnol., 2012, no. S, pp. 7–17.

    Google Scholar 

  18. Maksimov, V. G., Basargin, O. V., Shcheglova, T. M., and Nikitina, V.Yu., Trudy VIAM, 2013, no. 6, paper 04 (viam-works.ru).

    Google Scholar 

  19. Kessel, H.U. and Hennicke, J., Interceram, 2007, vol. 56, no. 3, pp. 164–166.

    CAS  Google Scholar 

  20. Sorokin, O.Yu., Grashchenkov, D.V., Solntsev, S.St., and Evdokimov, S.A., Trudy VIAM, 2014, no. 6, paper. 08 (viam-works.ru).

    Google Scholar 

  21. Khasanov, O.L., Dvilis, E.S., and Bikbaeva, Z.G., Metody kompaktirovaniya i konsolidatsii nanostrukturnykh materialov (Methods for Compaction and Consolidation of Nanostructured Materials), Tomsk: Tomsk. Politekhn. Univ., 2008.

    Google Scholar 

  22. Annenkov, Yu.M., Akarakchin, S.A., and Ivashutenko A.S., Butlerovskie Soobshch., 2012, vol. 30, no. 4, pp. 74–78.

    Google Scholar 

  23. Khasanov, O.L., Dvilis, E.S., Khasanov, A.O., et al., Izv. Tomsk. Politekhn. Univ., 2012, vol. 320, no. 2, pp. 58–62.

    Google Scholar 

  24. Khasanov, O.L., Dvilis, E.S., Khasanov, A.O., et al., Izv. Vyssh. Uchebn. Zaved, Fiz., 2012, vol. 55, no. 52, pp. 270–275.

    Google Scholar 

  25. Blagoveshchenskii, Yu.V., Boldin, M.S., Isaeva, N.V., and Kotkov, D.N., Nauch. Vedomosti., Ser.: Mat., Fiz., 2011, no. 11(106), issue 23, pp. 151–158.

    Google Scholar 

  26. Popil’skii, R.Ya. and Pivinskii, Yu.E., Pressovanie poroshkovykh keramicheskikh mass (Compaction of Powdered Ceramic Masses), Moscow: Metallurgiya, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Grashchenkov.

Additional information

Original Russian Text © D.V. Grashchenkov, O.Yu. Sorokin, Yu.E. Lebedeva, M. L. Vaganova, 2015, published in Zhurnal Prikladnoi Khimii, 2015, Vol. 88, No. 3, pp. 379–386.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grashchenkov, D.V., Sorokin, O.Y., Lebedeva, Y.E. et al. Specific features of sintering of HfB2-based refractory ceramic by hybrid spark plasma sintering. Russ J Appl Chem 88, 386–393 (2015). https://doi.org/10.1134/S1070427215030040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427215030040

Keywords

Navigation