Skip to main content
Log in

Colloid and nano-sized catalysts in organic synthesis: X. Synthesis of carboxamides by direct amidation of carboxylic acids and transamidation catalyzed by colloid copper

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

It was found that in the presence of colloid copper the direct amidation of some carboxylic acids with primary and secondary amines in benzene with azeotropic distillation of water became possible. The catalyst was proven to be suitable also for transamidation reaction of a number of carboxylic acid amides under mild conditions in solvent-free conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mokhov, V.M., Popov, Yu.V., and Nebykov, D.N., Russ. J. Gen. Chem., 2014, vol. 84, no. 11, p. 2073. DOI: 10.1134/S1070363214110036.

    Article  CAS  Google Scholar 

  2. Weygand-Hilgetag, Metody eksperimenta v organicheskoi khimii (Methods of Experiment in Organic Chemistry). Moscow: Khimiya, 1968. 944 p.

    Google Scholar 

  3. Hofmann, A.W., Chem. Ber., 1882, vol. 15, p. 977. DOI: 10.1002/cber.188201501202.

    Article  Google Scholar 

  4. Noybs, W.A., and Goebel, W.F., J. Am. Chem. Soc., 1922, vol. 44, no. 10, p. 2286. DOI: 10.1021/ja01431a026.

    Article  Google Scholar 

  5. Allen, C.L., and Williams, J.M.J., Chem. Soc. Rev., 2011, vol. 40, p. 3405. DOI: 10.1039/C0CS00196A.

    Article  CAS  Google Scholar 

  6. Chaudhari, P.S., Salim, S.D., Sawant, R.V., and Akamanchi, K.G., Green Chem., 2010, vol. 12, p. 1707. DOI: 10.1039/C0GC00053A.

    Article  CAS  Google Scholar 

  7. Komura, K., Nakano, Yu., and Koketsu, M., Green Chem., 2011, vol. 13, p. 828. DOI: 10.1039/C0GC00673D.

    Article  CAS  Google Scholar 

  8. Starkov, P., and Sheppard, T.D., Org. Biomol. Chem., 2011, vol. 9, p. 1320. DOI: 10.1039/C0OB01069C.

    Article  CAS  Google Scholar 

  9. Allen, C.L., Chhatwal, A.R, and Williams, J.M.J., Chem. Commun., 2012, vol. 48, p. 666. DOI: 10.1039/C1CC15210F.

    Article  CAS  Google Scholar 

  10. Grosjean, Ch., Parker, J., Thirsk, C., and Wright, A.R., Org. Proc. Res. Dev., 2012, vol. 16, p. 781. DOI: 10.1021/op400011s.

    Article  CAS  Google Scholar 

  11. Wang, Ch., Yu, H-Zh., Fu, Y., and Guob, Q.-X., Org. Biomol. Chem., 2013, vol. 11, p. 2140. DOI: 10.1039/c3ob27367a.

    Article  CAS  Google Scholar 

  12. Gernigon, N., Al-Zoubi Raed, M., and Hall, D.G., J. Org. Chem., 2012, vol. 77, p. 8386. DOI: 10.1021/jo3013258.

    Article  CAS  Google Scholar 

  13. Ghosh, S., Bhaumik, A., Mondal, J., Mallik, A., Sengupta (Ban-dyopadhyay), S., and Mukhopadhyay, Ch., Green Chem., 2012, vol. 14, p. 3220. DOI: 10.1039/C2GC36092F.

    Article  CAS  Google Scholar 

  14. Ryoki, N., Takahiro, N., Yasuhiro, Y., and Haruo, M., J. Org. Chem., 1991, vol. 56, no. 12, p. 4076. DOI: 10.1021/jo00012a058.

    Article  Google Scholar 

  15. Lundberg, H., Tinnis, F., and Adolfsson, H., Synlett, 2012, vol. 23, no. 15, p. 2201. DOI: 10.1055/s-0032-1316993.

    Article  CAS  Google Scholar 

  16. Jursic, B.S., and Zdravkovski, Z., Synth. Commun., 1993, vol. 23, no. 19, p. 2761. DOI: 10.1055/s-0029-1260797.

    Article  CAS  Google Scholar 

  17. Yamada, Y.M.A., and Uozumi, Y., Org. Lett., 2006, vol. 8, no. 7, p. 1375. DOI: 10.1021/ol060166q.

    Article  CAS  Google Scholar 

  18. Popov, Yu.V., Mokhov, V.M., and Tankabekyan, N.A., Russ. J. Gen. Chem., 2014, vol. 84, no. 5, p. 826. DOI: 10.1134/S1070363214050065.

    Article  CAS  Google Scholar 

  19. Popov, Yu.V., Mokhov, V.M., and Budko, I.I., Russ. J. Gen. Chem., 2014, vol. 84, no. 10, p. 1915. DOI: 10.1134/S1070363214100089.

    Article  CAS  Google Scholar 

  20. Xie, Y.-X., Song, R.-J., Liu, Y., Liu, Y.-Y., Xiang, J.-N., and Li, J.-H., Adv. Synth. Catal., 2013, vol. 355, p. 3387. DOI: 10.1002/adsc.201300630.

    Article  CAS  Google Scholar 

  21. Jursic, B.S., and Zdravkovski, Z., Synth. Commun., 1993, vol. 23, no. 19, p. 2761. DOI: 10.1080/00397919308013807.

    Article  CAS  Google Scholar 

  22. Bon, E.D., Bigg, C.H., and Bertrand, G., J. Org. Chem., 1994, vol. 59, p. 4035. DOI: 10.1021/jo00094a004.

    Article  CAS  Google Scholar 

  23. Eldred, S.E., Stone, D.A., Gellman, S.H., and Stahl, S.S., J. Am. Chem. Soc., 2003, vol. 125, p. 3422. DOI: 10.1021/ja028242h.

    Article  CAS  Google Scholar 

  24. Hoerter, J.M., Otte, K.M., Gellman, S.H., and Stahl, S.S., J. Am. Chem. Soc., 2006, vol. 128, no. 15, p. 5177. DOI: 10.1021/ja060331x.

    Article  CAS  Google Scholar 

  25. Allen, C.L., Atkinson, B.N., and Williams, J.M., Angew. Chem. Int. Ed., 2012, vol. 51, no. 6, p. 1383. DOI: 10.1002/anie.201107348.

    Article  CAS  Google Scholar 

  26. Nguyen, T.B., Sorres, J., Tran, M.Q., and Ermolenko, L., Org. Lett., 2012, vol. 14, no. 12, p. 3202. DOI: 10.1021/ol301308c.

    Article  CAS  Google Scholar 

  27. Rao, S.N., Mohan, D.C., and Adimurthy, S., Org. Lett., 2013, vol. 15, no. 7, p. 1496. DOI: 10.1021/ol4002625.

    Article  CAS  Google Scholar 

  28. Lanigan, R.M., Starkov, P., and Sheppard, T.D., Chem. Catal. Chem., 2013, vol. 5, no. 10, p. 2832. DOI: 0.1002/cctc.201300164.

    Google Scholar 

  29. Atkinson, B.N., Chhatwal, A.R., Lomax, H.V., Walton, J.W., and Williams, J.M., Chem. Commun., 2012, vol. 48, no. 95, p. 11626. DOI: 10.1039/c2cc37427g.

    Article  CAS  Google Scholar 

  30. Ghosh, S.C., Li, C.C., Hua, C.Z., and Anqi, C., Adv. Synth. Catal., 2014, vol. 356, no. 3, p. 475. DOI: 10.1002/adsc.201300717.

    Article  CAS  Google Scholar 

  31. Tamura, M., Tonomura, T., Shimizu, K., and Satsuma, A., Green Chem., 2012, vol. 14, p. 717. DOI: 10.1039/C2GC16316K.

    Article  CAS  Google Scholar 

  32. Oda, R., Hayashi, Y., and Takai, T., Tetrahedron, 1968, vol. 24, p. 4051. DOI: 10.1016/S0040-4020(01)92613-4.

    Article  CAS  Google Scholar 

  33. Nefkens, G.H.L., Tesser, G.I., and Nivard, R.J.F., Rec. Trav. Chim., 1960, vol. 79, p. 688. DOI: 10.1016/S0040-4039(01)90783-X.

    Article  Google Scholar 

  34. Ugi, I., Meyr, R., Lipinski, M., Bodesheim, F., and Rosendahl, F., Org. Synth., 1961, vol. 41, p. 13. DOI: 10.15227/orgsyn.041.0013.

    Article  CAS  Google Scholar 

  35. Bondarenko, L., Dix, I., Hinrichs, H., and Hopf, H., Synthesis, 2004, no. 16, p. 2751. DOI: 10.1055/s-2004-834872.

    Google Scholar 

  36. Gmehling, J., and Mollmann, Ch., Ind. Eng. Chem. Res., 1998, vol. 37, no. 8, p. 3112. DOI: 10.1021/ie970782d.

    Article  CAS  Google Scholar 

  37. Frings, R.B., and Grahe, G.F. Pat. US 5395911A (1995).

  38. Mueller, K. Pat. US 3816442 (1974).

  39. Le, Z.-G., Chen, Z.-C., Hu, Y., Zheng, Q.-G., Synthesis, 2004, no. 7, p. 995. DOI: 10.1055/s-2004-822337.

    Google Scholar 

  40. Smith, L., and Emerson, O., J. Am. Chem. Soc., 1945, vol. 67, no. 10, p. 1862. DOI: 10.1021/ja01226a600.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Mokhov.

Additional information

Original Russian Text © V.M. Mokhov, Yu.V. Popov, I.I. Budko, 2015, published in Zhurnal Obshchei Khimii, 2015, Vol. 85, No. 4, pp. 575–581.

For communication IX, see [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhov, V.M., Popov, Y.V. & Budko, I.I. Colloid and nano-sized catalysts in organic synthesis: X. Synthesis of carboxamides by direct amidation of carboxylic acids and transamidation catalyzed by colloid copper. Russ J Gen Chem 85, 820–826 (2015). https://doi.org/10.1134/S1070363215040088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363215040088

Keywords

Navigation