Skip to main content
Log in

Syntheses and structures of 1d coordination polymers based on cluster anions [Re4Te4(CN)12]4– and cationic Ln3+ (Ln = La, Gd) complexes with 1,10-phenanthroline

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Two new porous coordination polymers based on cluster anions [Re4Te4(CN)12]4– and cationic Ln3+ (Ln = La, Gd) complexes with 1,10-phenanthroline (Рhen) are synthesized under hydrothermal conditions. The structures of the compounds are determined by X-ray diffraction analysis (CIF files CCDC 1437445 (I) and 1437446 (II)). Compound (РhenH)[{La(H2O)3(Рhen)2}{Re4Te4(CN)12}] · 1.5Рhen · 6H2O (I) crystallizes in the space group \(P\bar 1\) (triclinic system): a = 13.322(3), b = 15.977(3), c = 18.576(4) Å, α = 71.34(3)°, β = 85.56(3)°, γ = 88.27(3)°, V = 3734.8(13) Å3. Compound (PhenH)[{Gd(H2O)2(Phen)2}{Re4Te4(CN)12}] · 2Phen · 0.5H2O (II) crystallizes in the space group C2/c (monoclinic crystal system): a = 18.146(1), b = 30.245(2), c = 13.455(2) Å, β = 97.858(2)°, V = 7315.4(1) Å3. Structures I and II are based on polymer chains consisting of alternating fragments [Re4Te4(CN)12]4– and {Ln(H2O) n (Phen)2}3+ (Ln = La, n = 3; Ln = Gd, n = 2) linked by the bridging CN ligands. The packings of the polymers contain extended channels due to the developed network of noncovalent interactions. The walls of the channels are formed by both hydrophilic (CN) and hydrophobic (Рhen) groups. The channels, whose volume is 25 and 15% for compounds I and II, respectively, are filled by disordered Phen molecules and PhenH+ cations, as well as by H2O molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Batten, S.R., Newille, S.M., and Turner, D.R., Coordination Polymers: Design, Analysis and Application, Cambridge: (UK): Royal Society of Chemistry, 2009.

    Google Scholar 

  2. Janiak, C. and Vieth, J.K., New J. Chem., 2010, vol. 34, no. 11, p. 2366.

    Article  CAS  Google Scholar 

  3. Phan, A., Doonan, C.J., Uribe-romo, F.J., et al., Acc. Chem. Res., 2010, vol. 43, no. 1, p. 58.

    Article  CAS  Google Scholar 

  4. Adatoz, E., Avci, A.K., and Keskin, S., Sep. Purif. Technol., 2015, vol. 152, p. 207.

    Article  CAS  Google Scholar 

  5. Yaghi, O.M., O’Keeffe, M., Ockwig, N.W., et al., Nature, 2003, vol. 423, no. 6941, p. 705.

    Article  CAS  Google Scholar 

  6. Eddaoudi, M., Kim, J., Rosi, N., et al., Science, 2002, vol. 295, no. 5554, p. 469.

    Article  CAS  Google Scholar 

  7. Tranchemontagne, D.J., Mendoza-Cortez, J.L., O’Keeffe, M., and Yaghi, O.M., Chem. Soc. Rev., 2009, vol. 38, no. 5, p. 1257.

    Article  CAS  Google Scholar 

  8. Kim, Y., Fedorov, V.E., and Kim, S.-J., J. Mater. Chem., 2009, vol. 19, no. 39, p. 7178.

    Article  CAS  Google Scholar 

  9. Fedorov, V.E., Naumov, N.G., Mironov, Y.V., et al., J. Struct. Chem., 2002, vol. 43, no. 4, p. 721.

    Article  Google Scholar 

  10. Naumov, N.G., Virovets, A.V., and Fedorov, V.E., J. Struct. Chem., 2000, vol. 41, no. 3, p. 609.

    Google Scholar 

  11. Laing, M., Kiernan, P.M., and Griffith, W.P., J. Chem. Soc., Chem. Commun., 1977, vol. 7, p. 221.

    Article  Google Scholar 

  12. Mironov, Y.V., Virovets, A.V., Artemkina, S.B., and Fedorov, V.E., J. Struct. Chem., 1999, vol. 40, no. 2, p. 375.

    Article  Google Scholar 

  13. Efremova, O.A., Mironov, Y.V., and Fedorov, V.E., Eur. J. Inorg. Chem., 2006, vol. 2006, no. 13, p. 2533.

    Article  Google Scholar 

  14. Li, B., Wen, H.-M., Cui, Y., et al., Prog. Polym. Sci., 2015, vol. 48, p. 40.

    Article  Google Scholar 

  15. Efremova, O.A., Mironov, Y.V., Kuratieva, N.V., and Fedorov, V.E., Polyhedron, 2011, vol. 30, no. 8, p. 1404.

    Article  CAS  Google Scholar 

  16. Efremova, O.A., Golenkov, E.O., Mironov, Y.V., et al., J. Phys. Chem. C, 2007, vol. 111, no. 29, p. 11008.

    Article  CAS  Google Scholar 

  17. Zhang, T. and Lin, W., Chem. Soc. Rev., 2014, vol. 43, no. 16, p. 5982.

    Article  CAS  Google Scholar 

  18. Efremova, O.A., Gayfulin, Y.M., Mironov, Y.V., et al., Polyhedron, 2012, vol. 31, no. 1, p. 515.

    Article  CAS  Google Scholar 

  19. APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11). Bruker Advanced X-ray Solutions, Madison: Bruker AXS Inc., 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya. M. Gayfulin or Yu. V. Mironov.

Additional information

Original Russian Text © Ya.M. Gayfulin, N.V. Kuratieva, Yu.M. Litvinova, Yu.V. Mironov, 2016, published in Koordinatsionnaya Khimiya, 2016, Vol. 42, No. 7, pp. 387–392.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayfulin, Y.M., Kuratieva, N.V., Litvinova, Y.M. et al. Syntheses and structures of 1d coordination polymers based on cluster anions [Re4Te4(CN)12]4– and cationic Ln3+ (Ln = La, Gd) complexes with 1,10-phenanthroline. Russ J Coord Chem 42, 423–428 (2016). https://doi.org/10.1134/S1070328416070034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328416070034

Navigation