Skip to main content
Log in

Synthesis and structural determination of mononuclear nine-coordinate (EnH2)[YbIII(Egta)(H2O)]2 · 6H2O and [YbIII(Eg3a)(H2O)2] · 6H2O

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Two novel rare earth metal coordination complexes, (EnH2)[YbIII(Egta)(H2O)]2 · 6H2O (I) and [YbIII(Eg3a)(H2O)2] · 6H2O (II), where En = ethylenediamine, H4Egta = ethyleneglycol-bis-(2-aminoethylether)-N,N,N′,N′-tetraacetic acid and H3Eg3a = ethyleneglycol-bis-(2-aminoethylether)-N,N,N′-triacetic acid, have been successfully synthesized through direct heating reflux and natural transformation. Complexes I, II were characterized by single-crystal X-ray diffraction techniques (CIF files CCDC nos. 966211 (I) and 966210 (II)). X-ray diffraction reveals that I is a nine-coordinate structure with a monocapped square antiprism crystallizing in the monoclinic crystal system with P21/c space group. The cell dimensionsare: a = 12.9616(14) Å, b = 12.7134(13) Å, c = 15.0132(15) Å, β = 105.3720(10)° and V = 2385.5(4) Å3. Complex II is also mononuclear nine-coordinate and crystallizes in the monoclinic crystal system with space group P21/c. The cell dimensions are as follows: a = 9.1926(10), b = 10.0046(12), c = 23.536(2) Å, β = 98.9650(10)° and V = 2385.5(4) Å3. However, when I is continued to direct heating reflux, the octadentate Egta ligand losts an acetic acid group and becomes a heptadentate Eg3a ligand. Thus, II was obtained, which was confirmed by means of single crystal X-ray diffraction analysis. This finding may offer a fast and efficient one-step reaction synthesis method of asymmetric aminopolycarboxylic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ma, S., Sun, D., Wang, X.S., et al., Angew. Chem. Int. Ed., 2007, vol. 46, p. 2458.

    Article  CAS  Google Scholar 

  2. Cairns, A.J., Perm, J.A., Wojtas, L., et al., J. Am. Chem. Soc., 2008, vol. 130, p. 1560.

    Article  CAS  Google Scholar 

  3. Zhang, J.P. and Chen, X.M., J. Am. Chem. Soc., 2008, vol. 130, p. 6010.

    Article  CAS  Google Scholar 

  4. Lee, J.Y., Olson, D.H., Pan, L., et al., Adv. Funct. Mater., 2007, vol. 17, p. 1255.

    Article  CAS  Google Scholar 

  5. Alvaro, M., Carbonell, E., Ferrer, B., et al., Chem. Eur. J., 2007, vol. 13, p. 5106.

    Article  CAS  Google Scholar 

  6. Xue, M., Zhu, G.S., Li, Y.X., et al., Cryst. Growth Des., 2008, vol. 8, p. 2478.

    Article  CAS  Google Scholar 

  7. Yu, X.H., Seo, S.Y., and Marks, T.J., J. Am. Chem. Soc., 2007, vol. 129, p. 7244.

    Article  CAS  Google Scholar 

  8. Amin, S.B. and Marks, T.J., J. Am. Chem. Soc., 2007, vol. 129, p. 10102.

    Article  CAS  Google Scholar 

  9. Verbruggen, A.M., J. Nucl. Med., 1990, vol. 17, p. 346.

    Article  CAS  Google Scholar 

  10. Volkert, W.A., Goeckeler, W.F., Ehrhardt, G.J., et al., J. Nucl. Med., 1991, vol. 32, p. 174.

    CAS  Google Scholar 

  11. Ozolinsh, M. and Eichler, H.J., Appl. Phys. Lett., 2000, vol. 77, p. 615.

    Article  CAS  Google Scholar 

  12. Terai, T., Kikuchi, K., Iwasawa, S., et al., J. Am. Chem. Soc., 2006, vol. 128, p. 6928.

    Google Scholar 

  13. Teotonio, E.E.S., Brito, H.F., Felinto, M.C.F.C., et al., J. Mol. Struct., 2005, vol. 751, p. 85.

    Article  CAS  Google Scholar 

  14. Deshpande, S.V., Denardo, S.J., Kukis, D.L., et al., J. Nucl. Med., 1990, vol. 31, p. 473.

    CAS  Google Scholar 

  15. Miao, Y.B., Hoffman, T.J., and Quinn, T.P., Nucl. Med. Biol., 2005, vol. 32, p. 485.

    Article  CAS  Google Scholar 

  16. Efthimiadou, E.K., Katsarou, M.E., Fardis, M., et al., Bioorg. Med. Chem. Lett., 2008, vol. 18, p. 6058.

    Article  CAS  Google Scholar 

  17. Kupriyanov, V., Yang, Y., Gervai, P., et al., J. Mol. Cell. Cardiol., 2008, vol. 44, p. 715.

    Article  Google Scholar 

  18. Accardo, A., Tesauro, D., Aloj, L., et al., Coord. Chem. Rev., 2009, vol. 253, p. 2193.

    Article  CAS  Google Scholar 

  19. Vaccaro, M., Accardo, A., Errico, G.D., et al., Biophys. J., 2007, vol. 93, p. 1736.

    Article  CAS  Google Scholar 

  20. Chong, H.S., Song, H.A., Lim, S., et al., Bioorg. Med. Chem. Lett., 2008, vol. 18, p. 2505.

    Article  CAS  Google Scholar 

  21. Weissleder, R. and Mahmood, U., Radiology, 2001, vol. 219, p. 316.

    Article  CAS  Google Scholar 

  22. Hak, S., Sanders, H.M.H.F., Agrawal, P., et al., Eur. J. Pharm. Biopharm., 2009, vol. 72, p. 397.

    Article  CAS  Google Scholar 

  23. Huang, S.N., Liu, C., Dai, G.P., et al., NeuroImage, 2009, vol. 46, p. 589.

    Article  Google Scholar 

  24. Egli, T., J. Biosci. Bioeng., 2001, vol. 92, p. 89.

    Article  CAS  Google Scholar 

  25. Sillanpää, M., Orama, M., Ramo, J., et al., Sci. Total Environ., 2001, vol. 267, p. 23.

    Article  Google Scholar 

  26. Rajesh, N.P., Meera, K., Perumal, C.K., et al., Mater. Chem. Phys., 2001, vol. 71, p. 299.

    Article  CAS  Google Scholar 

  27. Hak, S., Sanders, H.M.H.F., Agrawal, P., et al., Eur. J. Pharm. Biopharm., 2009, vol. 72, p. 397.

    Article  CAS  Google Scholar 

  28. Li, Z.F., Li, W.S., Li, X.J., et al., Magn. Reson. Imaging, 2007, vol. 25, p. 41.

    CAS  Google Scholar 

  29. Kubíček, V. and Tóth, É., Adv. Inorg. Chem., 2009, vol. 61, p. 63.

    Article  Google Scholar 

  30. Wang, J., Zhang, X.D., Zhang, Y., et al., J. Struct. Chem., 2004, vol. 45, no. 1, p. 114.

    Article  CAS  Google Scholar 

  31. Wang, J., Zhang, X.D., Jia, W.G., et al., Chem. Res. Chin. Univ., 2003, vol. 19, p. 145.

    Google Scholar 

  32. Wang, J., Hu, P., Liu, B., et al., J. Coord. Chem., 2009, vol. 62, p. 3168.

    Article  CAS  Google Scholar 

  33. Gao, J.Q., Li, D., Wang, J., et al., Russ. J. Coord. Chem., 2011, vol. 37, p. 473.

    Article  CAS  Google Scholar 

  34. Gao, J.Q., Li, D., Wang, J., et al., J. Coord. Chem., 2011, vol. 64, p. 2234.

    Article  CAS  Google Scholar 

  35. Bai, Y., Gao, J.Q., Wang, J., et al., Russ. J. Coord. Chem., 2013, vol. 39, p. 147.

    Article  Google Scholar 

  36. Xu, R., Li, D., Wang, J., et al., Russ. J. Coord. Chem., 2010, vol. 36, p. 810.

    Article  CAS  Google Scholar 

  37. Gao, J.Q., Wu, T., Wang, J., et al., Russ. J. Coord. Chem., 2011, vol. 37, p. 817.

    Article  CAS  Google Scholar 

  38. Guggenberger, L.J. and Muetterties, E.L., J. Am. Chem. Soc., 1976, vol. 98, p. 7221.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, C., Kong, D.Y. & Wang, J. Synthesis and structural determination of mononuclear nine-coordinate (EnH2)[YbIII(Egta)(H2O)]2 · 6H2O and [YbIII(Eg3a)(H2O)2] · 6H2O. Russ J Coord Chem 41, 285–292 (2015). https://doi.org/10.1134/S1070328415040041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328415040041

Keywords

Navigation