Skip to main content
Log in

Influence of the bridging coordination of DMSO on the exchange interaction character in the binuclear copper(II) complex with the nonsymmetrical exchange fragment

Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The binuclear copper(II) complex [Cu2L(CH3COO)] (I), where L3− is the azomethine trianion based on 3-methyl-4-formyl-1-phenylpyrazol-5-one and 1,3-diaminopropan-2-ol, and its DMSO adduct (II) in which the DMSO molecule acts as an additional bridging ligand are synthesized. The structure of complex II is determined by X-ray diffraction analysis, and the structure parameters of the coordination unit of complex I are determined by EXAFS spectroscopy. The μ2-coordination of the DMSO molecule in compound II results in a change in the sign of the exchange interaction parameter. In complex I, the antiferromagnetic exchange interaction (2J = −169 cm−1) occurs between the copper(II) ions. The exchange interaction of the ferromagnetic type (2J = 174 cm−1) is observed in complex II. The quantum-chemical calculations of the magnetic exchange parameters by the density functional theory method show that the role of the DMSO molecule as a switch of the exchange interaction character is exclusively the stabilization of the “broken” conformation of the metallocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Casellato, U., Vigato, P.A., and Vidali, M., Coord. Chem. Rev., 1977, vol. 23, no. 1, p. 31.

    Article  CAS  Google Scholar 

  2. Suzuki, M., Furutachi, H., and Okawa, H., Coord. Chem. Rev., 2000, vols. 200–202, no. 1, p. 105.

    Article  Google Scholar 

  3. Vigato, P.A. and Tamburini, S., Coord. Chem. Rev., 2004, vol. 248, nos. 17–20, p. 1717.

    Article  CAS  Google Scholar 

  4. Vigato, P.A., Tamburini, S., and Bertolo, L., Coord. Chem. Rev., 2007, vol. 251, nos. 11–12, p. 1311.

    Article  CAS  Google Scholar 

  5. Kogan, V.A., Lukov, V.V., and Shcherbakov, I.N., Russ. J. Coord. Chem., 2010, vol. 36, no. 6, p. 401.

    Article  CAS  Google Scholar 

  6. Mazurek, W., Kennedy, B.J., Murray, K.S., et al., Inorg. Chem., 1985, vol. 24, no. 20, p. 3258.

    Article  CAS  Google Scholar 

  7. Nishida, Y. and Kida, S., Inorg. Chem., 1988, vol. 27, no. 3, p. 447.

    Article  CAS  Google Scholar 

  8. Fallon, G.D., Markiewicz, A., Murray, K.S., and Quach, T., J. Chem. Soc., Chem. Commun., 1991, no. 3, p. 198.

    Google Scholar 

  9. Chou, Y.-C., Huang, S.-F., Koner, R., et al., Inorg. Chem., 2004, vol. 43, no. 9, p. 2759.

    Article  CAS  Google Scholar 

  10. Lai, T.-C., Chen, W.-H., Lee, C.-J., et al., J. Mol. Struct., 2009, vol. 935, no. 1, p. 97.

    Article  CAS  Google Scholar 

  11. Kou, Y., Tian, J., Li, D., et al., Dalton Trans., 2009, no. 13, p. 2374.

    Google Scholar 

  12. Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Inorg. Chem. Commun., 2012, vol. 17, p. 1.

    CAS  Google Scholar 

  13. SMART and SAINT. Release 5.0. Area Detector Control and Integration Software. Bruker AXS, Madison (WI, USA): Analytical X-Ray Instruments, 1998.

  14. Sheldrick, G.M., SADABS. A Program for Exploiting the Redundancy of Area-detector X-Ray Data, Göttingen (Germany): Univ. of Göttingen, 1999.

    Google Scholar 

  15. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112.

    Article  CAS  Google Scholar 

  16. Kochubei, D.I., Babanov, Yu.A., Zamaraev, K.I., et al., Rentgenospektral’nyi metod izucheniya struktury amorfnykh tel: EXAFS-spektroskopiya (X-ray Spectral Method for Structural Study of Amorphous Solids: EXAFS Spectroscopy), Novosibirsk: Nauka. Sib. otdnie, 1988.

    Google Scholar 

  17. Newville, M., J. Synchrotron Rad., 2001, no. 8, p. 96.

    Google Scholar 

  18. Zabinski, S.I., Rehr, J.J., Ankudinov, A., and Alber, R.C., Phys. Rev., B, 1995, vol. 52, p. 2995.

    Article  Google Scholar 

  19. Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648.

    CAS  Google Scholar 

  20. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, no. 2, p. 785.

    Article  CAS  Google Scholar 

  21. Popov, L.D., Shcherbakov, I.N., Levchenkov, S.I., et al., J. Coord. Chem., 2008, vol. 61, no. 3, p. 392.

    Article  CAS  Google Scholar 

  22. Ginsberg, A.P., J. Am. Chem. Soc., 1980, vol. 102, no. 1, p. 111.

    Article  CAS  Google Scholar 

  23. Noodleman, L., Peng, C.Y., Case, D.A., and Mouesca, J.-M., Coord. Chem. Rev., 1995, vol. 144, p. 119.

    Article  Google Scholar 

  24. Lacroix, P.G. and Daran, J.-C., J. Chem. Soc., Dalton Trans., 1997, no. 8, p. 1369.

    Google Scholar 

  25. Soda, T., Kitagawa, Y., Onishi, T., et al., Chem. Phys. Lett., 2000, vol. 319, nos. 3–4, p. 223.

    CAS  Google Scholar 

  26. Gaussian 03. Revision D.01, Wallingford (CT, USA): Gaussian, Inc., 2004.

  27. Zhurko, G.A., Chemcraft 1.6 (build 338), http://www.chemcraftprog.com

  28. Kukushkin, Yu.N., Khodzhaev, O.F., Budanova, V.F., and Parpiev, N.A., Termoliz koordinatsionnykh soedinenii (Thermolysis of Coordination Compounds), Tashkent: Fan, 1986.

    Google Scholar 

  29. Kawata, T., Ohba, S., Nishida, Y., and Tokii, T., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1993, vol. 49, no. 12, p. 2070.

    Article  Google Scholar 

  30. Nishida, Y. and Kida, S., J. Chem. Soc., Dalton Trans., 1986, no. 12, p. 2633.

    Google Scholar 

  31. Weng, C.-H., Cheng, S.-C., Wei, H.-M., et al., Inorg. Chim. Acta, 2006, vol. 359, no. 7, p. 2029.

    Article  CAS  Google Scholar 

  32. Nishida, Y., Takeuchi, M., Takahashi, K., and Kida, S., Chem. Lett., 1985, vol. 14, no. 5, p. 631.

    Article  Google Scholar 

  33. Kogan, V.A., Lukov, V.V., Novotortsev, V.M., et al., Izv. Ross. Akad. Nauk, Ser. Khim., 2005, vol. 54, no. 3, p. 592.

    Google Scholar 

  34. Elmali, A., Zeyrek, C.T., and Elerman, Y., J. Mol. Struct., 2004, vol. 693, nos. 1–3, p. 225.

    Article  CAS  Google Scholar 

  35. Tupolova, Yu.P., Popov, L.D., Levchenkov, S.I, et al., Russ. J. Coord. Chem., 2011, vol. 37, no. 7, p. 552.

    Article  CAS  Google Scholar 

  36. Shcherbakov, I.N., Levchenkov, S.I., Tupolova, Yu.P., et al., Eur. J. Inorg. Chem., 2013, vol. 2013, no. 28, p. 5033.

    CAS  Google Scholar 

  37. Lee, C.-J., Cheng, S.-C., Lin, H.-H., and Wei, H.H., Inorg. Chem. Commun., 2005, vol. 8, no. 3, p. 235.

    CAS  Google Scholar 

  38. Dhara, K., Roy, P., Ratha, J., et al., Polyhedron, 2007, vol. 26, no. 15, p. 4509.

    Article  CAS  Google Scholar 

  39. Chen, C.-Y., Lu, J.-W., and Wei, H.-H., J. Chin. Chem. Soc, 2009, vol. 56, no. 1, p. 89.

    CAS  Google Scholar 

  40. Yamamoto, T., X-ray Spectrom., 2008, vol. 37, no. 6, p. 572.

    Article  CAS  Google Scholar 

  41. Nagatani, H., Tanida, H., Watanabe, I., and Sagara, T., Anal. Sci., 2009, vol. 25, no. 4, p. 475.

    Article  CAS  Google Scholar 

  42. Chen, L.X., Shaw, G.B., Liu, T., et al., Chem. Phys., 2004, vol. 299, nos. 2–3, p. 215.

    CAS  Google Scholar 

  43. Choy, J.-H., Yoon, J.-B., and Jung, H., J. Phys. Chem. B, 2002, vol. 106, no. 43, p. 11120.

    CAS  Google Scholar 

  44. Bleaney, B. and Bowers, K.D., Proc. R. Soc. London. A, 1952, vol. 214, no. 1119, p. 451.

    Article  CAS  Google Scholar 

  45. Kahn, O., Molecular Magnetism, New York: VCH, 1993.

    Google Scholar 

  46. Queralt, N., De Graaf, C., Cabrero, J., and Caballol, R., Mol. Phys., 2003, vol. 101, no. 13. p. 2095.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Levchenkov.

Additional information

Original Russian Text © S.I. Levchenkov, I.N. Shcherbakov, L.D. Popov, V.G. Vlasenko, K.Yu. Suponitskii, A.A. Tsaturyan, V.V. Lukov, V.A. Kogan, 2014, published in Koordinatsionnaya Khimiya, 2014, Vol. 40, No. 8, pp. 451–459.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levchenkov, S.I., Shcherbakov, I.N., Popov, L.D. et al. Influence of the bridging coordination of DMSO on the exchange interaction character in the binuclear copper(II) complex with the nonsymmetrical exchange fragment. Russ J Coord Chem 40, 523–530 (2014). https://doi.org/10.1134/S1070328414080041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328414080041

Keywords

Navigation