Skip to main content
Log in

Synthesis of organo-montmorillonite and its effect on soil urease and L-glutaminase activites

  • Mineralogy and Micromorphology of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Organoclays are highly important to environmental studies due to their unique applications. The amidohydrolase family plays a significant role in maintaining a sustainable environment and agriculture sector. Therefore, keeping these enzymes active and stable in soil is a crucial task. In doing so, this study focused on the synthesis of organo-montmorillonite (MMT) and its effect on activity and stability of these enzymes in soil. The organo-MMT was synthesized by modifying the Na-MMT using the HDTMA-Br Cationic surfactant. Mineralogical properties of the synthesized organoclay were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscope (FESEM) instruments. The effects of this organoclay and incubation period on urease and L-glutaminase activities in soil were also investigated. Results showed that the d-spacing of organo-MMT was increased by adding surfactant. Results from statistical analyses showed that the effect of clay type and incubation period on the activity of both enzymes (urease and L-glutaminase) were significant at the 5% level. The activity of both enzymes in the soil samples treated with the organo-MMT was significantly higher than control and MMT samples. The organoclay prepared successfully maintained soil enzymes. Therefore, use of this organoclay can positively affect enzyme activity and stability. This study plays an important role in synthesizing low-cost organoclays to be used in increasing the stability and activity of amidohydrolase family in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Acosta-Martinez, L. Cruz, and D. Sotomayor-Ramirez, “Enzyme activities as affected by soil properties and land use in tropical watershed,” Appl. Soil Ecol. 35, 35–45 (2007).

    Article  Google Scholar 

  2. V. Acosta-Martinez, and M. A. Tabatabai, “Arylamidase activity of soils,” Soil Sci. Soc. Am. J. 64, 215–221 (2000).

    Article  Google Scholar 

  3. T. V. Alekseeva, and B. N. Zolotareva, “Fractionation of humic acids adsorption on montmorillonite and palygorskite,” Eurasian Soil. Sci. 46, 658–671 (2013).

    Article  Google Scholar 

  4. J. H. An, and D. Stefan, “Adsorption of tannic acid on chitosan-montmorillonite as a function of pH and surface charge properties,” Appl. Clay Sci. 36, 256–264 (2007).

    Article  Google Scholar 

  5. I. I. Bashour, and A. H. Sayegh, Method of Analysis for Soils of Arid and Semi Arid Regions (Food and Agriculture Organization, Beirut, 2007), pp. 69–71.

    Google Scholar 

  6. F. Bastida, E. Kandeler, T. Hernandez, and C. Garcia, “Long-term effect of municipal solid waste amendment on microbial abundance and humus-associated enzyme activities under semiarid conditions,” Microb. Ecol. 55, 651–661 (2008).

    Article  Google Scholar 

  7. D. Baybas, and U. Ulusoy, “Polyacrylamide-aluminosilicate composites for thorium adsorption,” Appl. Clay Sci. 51, 138–146 (2011).

    Article  Google Scholar 

  8. C. Borghetti, P. G. Ioachini, C. Marzadori, and C. Gessa, “Activity and stability of urease-hydroxyapatite and urease-hydrooxyapatite-humic acid complexes,” Biol. Fertil. Soils 38, 96–101 (2003).

    Article  Google Scholar 

  9. J. Bors, S. Dultz, and B. Riebe, “Organophilic bentonites as adsorbents for radionuclides: II. Chemical and mineralogical properties of HDPy-montmorillonite,” Appl. Clay Sci. 16, 15–19 (2000).

    Article  Google Scholar 

  10. R.G. Burns, A. H. Pukite, and A. Mclaren, “Concerning the location and persistence of soil urease,” Soil Sci. Soc. Am. J., 308–311 (1972).

  11. H. Carlsson, and E. Nordlander, “Computational modeling of the mechanism of urease,” Biol. Chem. Appl. J., 1–8 (2010).

  12. S. Cengiz, L. Cavas, and K. Yurdokoc, “Bentonite and sepiolite as supporting media: immobilization of catalase,” Appl. Clay Sci. 65–66, 114–120 (2012).

    Article  Google Scholar 

  13. E. V. Dadenko, K. Sh. Kazeev, S. I. Kolesnikov, and V. F. Valkov, “Changes in enzymatic activity of soil samples upon their storage,” Eurasian Soil. Sci. 42, 1481–1486 (2009).

    Article  Google Scholar 

  14. W. T. Frankenberger Jr., and M. A. Tabatabai, “Amidase activity in soil: 11. Kinetic parameters,” Soil Sci. Soc. Am. J. 44, 532–536 (1980).

    Article  Google Scholar 

  15. C. Galindo-Gonzalez, J. D. Vicente, M. M. Ramos-Tejada, M. T. Lopez-Lopez, F. Gonzalez-Caballero, and J. D. G. Duran, “Preparation and sedimentation behavior in magnetic fields of magnetite-covered clay particles,” Langmuir 21, 4410–4419 (2005).

    Article  Google Scholar 

  16. H. Heinz, R. A. Vaia, R. Krishnamoorti, and B. L. Farmer, “Self-assembly of alkylammonium chains on montmorillonite: effect of chain length, head group structure, and cation exchange capacity,” Chem. Mat. J. 19, 59–68 (2007).

    Article  Google Scholar 

  17. R. Iliescu, E. Andronescu, G. Voicu, A. Ficai, and C. I. Covaliu, “Hybrid materials based on montmorillonite and citostatic drugs Preparation and characterization,” Appl. Clay Sci. 52, 62–68 (2011).

    Article  Google Scholar 

  18. R. Ishii, M. Nakatsuji, and K. Ooi, “Preparation of highly porous silica nanocomposites from clay mineral: a new approach using pillaring method combined with selective” Microporous Mesoporous Mater. 79, 111–119 (2005).

    Article  Google Scholar 

  19. E. Kandeler, C. Poll, W. T. Jr. Frankenberger, and M. A. Tabatabai, “Nitrogen cycle enzymes,” in {Methods of Soil Enzymology}, Ed. by R. P. Dick (Soil Science Society of America, Fitchburg, WI, 2011), pp. 211–245.

    Google Scholar 

  20. H. Koyuncu, N. Yildiz, U. Salgin, F. Koroglu, and A. Calimlt, “Adsorption of o-m and p-nitrophenols onto organically modified bentonites,” J. Hazard. Mater. 185, 1332–1339 (2011).

    Article  Google Scholar 

  21. G. Lagaly, and I. Dekany, “Adsorption on hydrophobized surfaces: clusters and self-organization,” Adv. Colloid Interface Sci. 114, 189–204 (2005).

    Article  Google Scholar 

  22. S. Y. Lee, W. J. Cho, P. S. Hahn, M. Lee, Y. B. Lee, and K. J. Kim, “Microstructural changes of reference montmorillonites by cationic surfactants,” Appl. Clay Sci. 30, 174–180 (2005).

    Article  Google Scholar 

  23. P. Leinweber, G. Jandl, C. Baum, K. U. Eckhardt, and E. Kandeler, “Stability and composition of soil organic matter control respiration and soil enzyme activities,” Soil Biol. Biochem. J. 40, 1496–1505 (2008).

    Article  Google Scholar 

  24. P. Nannipieri, “The potential use of soil enzymes as indicators of productivity, sustainability and pollution,” in, Ed. by C. E. Pankhurst, M. Doube, S. R. Gupta, and P. R. Grace (CSIRO, Clayton, 1994), pp. 238–244.

    Google Scholar 

  25. S. S. Ray, and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Prog. Polym. Sci. 28, 1539–1641 (2003).

    Article  Google Scholar 

  26. G. Renella, U. Szukics, L. Landi, and P. Nannipieri, “Quantitative assessment of hydrolase production and persistence in soil,” Biol. Fertil. Soils 44, 321–329 (2007).

    Article  Google Scholar 

  27. G. Sanjay, and S. Sugunan, “Glucomylase immobilized on montmorillonite: synthesis, characterization and starch hydrolysis activity in a fixed bed reactor,” Catal. Commun. J. 6, 525–530 (2005).

    Article  Google Scholar 

  28. S. Sarioglan, S. Gurbuz, T. Ipeksac, M. G. Sedan, and M. Erol, “Pararosaniline and crystal violet tagged montmorillonite for latent fingerprint investigation,” Appl. Clay Sci. 87, 235–244 (2014).

    Article  Google Scholar 

  29. Y.H. Shen, “Preparations of organobentonite using nonionic surfactants,” Chemosphere 44, 989–995 (2001).

    Article  Google Scholar 

  30. N. B. Shrigadi, A. B. Shinde, and S. D. Samant, “Study of catalytic activity of free and K10-supported iron oxyhydroxides and oxides in the Friedel–Crafts benzylation reaction using benzyl chloride/alcohol to understand their role in the catalysis by the Feexchanged/ impregnated K10 catalysts,” Appl. Catal., A 252, 23–35 (2003).

    Article  Google Scholar 

  31. B. K. G. Theng, G. J. Churchman, W. P.Gates, and G. Yuan, “Organically modified clays for pollutant uptake and environmental protection,” in (Theories and Applications), Ed. by Q. Huang, P. M. Huang, and A. Violante (Springer-Verlag, Berlin, 2008), pp. 145–174.

    Google Scholar 

  32. C. C. Wang, L. C. Juang, C. K. Lee, T. C. Hsu, J. F. Lee, and H. P. Chao, “Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite,” J. Colloid Interface Sci. 280, 27–35 (2004).

    Article  Google Scholar 

  33. L. Wu, L. Liao, G. Lv, F. Qin, and Z. Li, “Microstructure and process of intercalation of imidazolium ionic liquids into montmorillonite,” Chem. Eng. J. 236, 306–313 (2014).

    Article  Google Scholar 

  34. N. Yilmaz, and S. Yapar, “Adsorption properties of tetradecyl-and hexadecyltrimethy-lammonium bentonites,” Appl. Clay Sci. 27, 223–228 (2004).

    Article  Google Scholar 

  35. R. Zhai, B. Zhang, L. Liu, Y. Xie, H. Zhang, and J. Liu, “Immobilization of enzyme biocatalyst on natural halloysite nanotubes,” Catal. Commun. J. 12, 259–263 (2010).

    Article  Google Scholar 

  36. Z. Zhang, J. Zhang, L. Liao, and Z. Xia, “Synrgistic effect of cationic and anionic surfactant for the modification of Ca-montmorillonite,” Mater. Res. Bull. 48 (5), 1811–1816 (2013).

    Article  Google Scholar 

  37. L. Z. Zhu, B. L. Chen, and X. Y. Shen, “Sorption of phenol, p-nitrophenol and aniline to dual-cation organobentonites from water,” Environ. Sci. Technol. J. 34, 468–475 (2000).

    Article  Google Scholar 

  38. L. Z. Zhu, R. L. Zhu, L. H. Xu, and X. Ruan, “Influence of clay charge densities and surfactant loading amount on the microstructure of CTMA-montmorillonite hybrids,” Colloids Surf., A 304, 41–48 (2007).

    Article  Google Scholar 

  39. G. Zhuang, Z. Zhang, J. Guo, L. Liao, and J. Zhao “A new ball milling method to produce organo-montmorillonite from anionic and nonionic surfactants,” Appl. Clay Sci. 104, 18–26 (2015).

    Article  Google Scholar 

  40. B. Zidelkheir, and M. Abdelgoad “Effect of surfactant agent upon the structure of montmorillonite X-ray diffraction and thermal analysis,” J. Therm. Anal. Calorim. 94, 181–187 (2008).

    Article  Google Scholar 

  41. B. Zohra, K. Aicha, S. Fatima, B. Norredine, and D. Zoubir, “Adsorption of direct red 2 on bentonite modified by cetyltrimethylammonium bromide,” Chem. Eng. J. 136, 295–305 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Abolhasani.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abolhasani, M.Z., Lakzian, A., Fotovat, A. et al. Synthesis of organo-montmorillonite and its effect on soil urease and L-glutaminase activites. Eurasian Soil Sc. 50, 613–619 (2017). https://doi.org/10.1134/S1064229317050027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229317050027

Keywords

Navigation