Skip to main content
Log in

Dynamics of denitrification and ammonification activities in the abandoned and intensely cultivated gray forest soils (Tula oblast)

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The results of experimental study of daily dynamics of denitrification activity and the activity and population density of ammonifiers in the abandoned (converted to long-term fallow) and intensely cultivated gray forest soils (Luvic Retic Greyzemic Phaeozems (Aric)) are discussed. The potential denitrification activity in the arable soil is higher than that in the fallow soil, whereas the actual denitrification activity in the arable soil is lower. Data on the dynamics of ammonification do not show reliable differences between the activities of ammonifiers in the arable and fallow soils, though the number of ammonifying bacteria is considerably higher in the arable soil. Differences in daily dynamics of the numbers of ammonifiers in the fallow and arable soils are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Belyaev, Physical and Chemical Analysis of Soils. Methodological Recommendations for Determination of Nutrients: Nitrogen, Phosphorous, and Potassium (Voronezh, 2000) [in Russian].

    Google Scholar 

  2. T. A. Valueva, T. A. Revina, E. L. Gvozdeva, N. G. Gerasimova, and O. L. Ozeretskovskaya, “Role of protease inhibitors in potato protection,” Russ. J. Bioorg. Chem. 29, 454–458 (2003).

    Article  Google Scholar 

  3. N. I. Gantimurova, Denitrification in Soils of Western Siberia (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  4. Dynamics of Natural Populations in the Open Systems, Pechurkin N. S., Ed., (Krasnoyarsk, 1975) [in Russian].

  5. N. B. Zinyakova, Candidate’s Dissertation in Biology (Pushchino, 2014).

    Google Scholar 

  6. N. B. Zinyakova, A. K. Khodzhaeva, A. S. Tulina, and V. M. Semenov, “Active organic matter in gray forest soil of arable and fallow lands,” Agrokhimiya, No. 9, 3–14 (2013).

    Google Scholar 

  7. R. I. Ibragimov, A. A. Yamaleeva, R. F. Talipov, A. A. Kulagin, and S. M. Yamalov, “Physical and biochemical mechanisms of the effect of ecologically safe reagents of plant production,” Usp. Sovrem. Estestvozn., No. 10, 38–39 (2003).

    Google Scholar 

  8. G. F. Lakin, Biometry (Vysshaya Shkola, Moscow, 1990) [in Russian].

    Google Scholar 

  9. Manual on Soil Microbiology and Biochemistry, Ed. by D. G. Zvyagintsev (Moscow State Univ., Moscow, 1991) [in Russian].

  10. E. V. Moshkina, Candidate’s Dissertation in Agriculture (St. Petersburg, 2009).

    Google Scholar 

  11. Practical Manual on Microbiology, Ed. by A. I. Netrusov (Akademiya, Moscow, 2005) [in Russian].

  12. G. F. Sadykov, Biological Nitrogen Fixation in Agrocenoses (Bashkir Scientific Center, Ural Branch, Academy of Sciences of Soviet Union, Ufa, 1989) [in Russian].

    Google Scholar 

  13. A. L. Stepanov and L. V. Lysak, Application of Gas Chromatography in Soil Microbiology: Manual (MAKS Press, Moscow, 2002) [in Russian].

    Google Scholar 

  14. M. M. Umarov, A. V. Kurakov, and A. L. Stepanov, Microbiological Transformation of Nitrogen in Soil (GEOS, Moscow, 2007) [in Russian].

    Google Scholar 

  15. T. A. Shokhova, Candidate’s Dissertation in Agriculture (Bryansk, 2011).

    Google Scholar 

  16. N. R. Emer, A. M. Semenov, V. V. Zelenev, N. B. Zinyakova, N. V. Kostina, and M. V. Golichenkov, “Daily dynamics of the number and activity of nitrogen-fixing bacteria in fallow and intensely cultivated soils,” Eurasian Soil Sci. 47, 801–808 (2014). doi 10.1134/ S106422931408002X

    Article  Google Scholar 

  17. V. Acoste-Martinez, G. Burow, T. M. Zobeck, and V. G. Allen, “Soil microbial communities and function in alternative systems to continuous cotton,” Soil Sci. Soc. Am. J. 74 (4), 1181–1192 (2010). doi 10.2136/ sssaj2008.0065

    Article  Google Scholar 

  18. A. Bannert, K. Kleineidam, L. Wissing, C. Mueller-Niggemann, V. Vogelsang, G. Welzl, Z. Cao, and M. Schloter, “Changes in diversity and functional gene abundances of microbial communities involved in nitrogen fixation, nitrification, and denitrification in a tidal wetland versus paddy soils cultivated for different time periods,” Appl. Environ. Microbiol. 77 (17), 6109–6116 (2011). doi 10.1128/AEM.01751–10

    Article  Google Scholar 

  19. E. Barrious, “Soil biota, ecosystem services and land productivity,” Ecol. Econ. 64, 269–285 (2007). doi 10.1016/j.ecolecon.2007.03.004

    Article  Google Scholar 

  20. S. Botton, M. van Heusden, J. R. Parsons, H. Smidt, and N. van Straalen, “Resilience of microbial systems towards disturbances,” Crit. Rev. Microbiol. 32, 101–112 (2006). doi 10.1080/10408410600709933

    Article  Google Scholar 

  21. D. Cheneby, D. Bru, N. Pascault, P. A. Maron, L. Ranjard, and L. Philippot, “Role of plant residues in determining temporal patterns of the activity, size, and structure of nitrate reducer communities in soil,” Appl. Environ. Microbiol. 76 (21), 7136–7143 (2010). doi 10.1128/AEM.01497-10

    Article  Google Scholar 

  22. B. S. Griffiths and L. Philippot, “Insights into the resistance and resilience of the soil microbial community,” FEMS Microbiol. Rev. 37, 112–129 (2013). doi 10.1111/j.1574-6976.2012.00343.x

    Article  Google Scholar 

  23. G. Hofman and O. V. Cleemput, Soil and Plant Nitrogen (Paris, IFA, 2004).

    Google Scholar 

  24. J. W. Leff, S. E. Jones, S. M. Prober, A. Barberan, et al., “Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe,” Proc. Natl. Acad. Sci. U.S.A. 112 (35), 10967–10972 (2015). doi 10.1073/pnas.1508382112

    Article  Google Scholar 

  25. X. Liu, J. Zhang, T. Gu, W. Zhang, Q. Shen, and S. Yin, “Microbial community diversities and taxa abundances in soils along a seven-year gradient of potato monoculture using high throughput pyrosequensing approach,” PLoS One 9 (1), 1–10 (2014). doi 10.1371/journal.pone.0086610

    Google Scholar 

  26. A. Monkiedje, M. Spitelle, D. Fotio, and P. Sukul, “The effect on land use on soil health indicators in periurban agriculture in the humid forest zone of southern Cameroon,” J. Environ. Qual. 35, 2402–2409 (2006). doi 10.2134/jeq2005.0447

    Article  Google Scholar 

  27. M. C. Moscatelli, A. Di Tizio, S. Marinari, and S. Grego, “Microbial indicators related to soil carbon in Mediterranean land use systems,” Soil Tillage Res. 97, 51–59 (2007). doi 10.1016/j.still.2007.08.007

    Article  Google Scholar 

  28. D. D. Myrold, “Soil nitrogen cycle,” in Encyclopedia of Environmental Microbiology, Ed. by G. Bitton (Wiley, New York, 2002), pp. 2936–2944.

    Google Scholar 

  29. E. P. Odum, “The strategy of ecosystem development,” Science 164, 262–270 (1969). doi 10.1126/science. 164.3877.262

    Article  Google Scholar 

  30. A. L. Peralta, J. W. Matthews, and A. D. Kent, “Microbial community structure and denitrification in a wetland mitigation bank,” Appl. Environ. Microbiol. 76 (13), 4207–4215 (2010). doi 10.1128/AEM.12977-09

    Article  Google Scholar 

  31. H. Y. Sun, S. P. Deng, and W. R. Raun, “Bacterial community structure and diversity in a century-old manure-treated agroecosystem,” Appl. Environ. Microbiol. 70 (10), 5868–5874 (2004). doi 10.1128/ AEM.70.10.5868-5874.2004

    Article  Google Scholar 

  32. M. J. Swift, J. Vandermeer, P. S. Ramakrishnan, J. M. Anderson, and C. K. Ong, “Biodiversity and agroecosystem function,” in Functional Role of Biodiversity: A Global Perspective, Ed. by H. A. Mooney, J. H. Cushman, E. Medina, O. E. Sala, and E.-D. Schulze (Wiley, New York, 1996), pp. 261–298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Emer.

Additional information

Original Russian Text © N.R. Emer, N.V. Kostina, M.V. Golichenkov, A.I. Netrusov, 2017, published in Pochvovedenie, 2017, No. 4, pp. 449–456.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emer, N.R., Kostina, N.V., Golichenkov, M.V. et al. Dynamics of denitrification and ammonification activities in the abandoned and intensely cultivated gray forest soils (Tula oblast). Eurasian Soil Sc. 50, 438–444 (2017). https://doi.org/10.1134/S1064229317040032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229317040032

Keywords

Navigation