Skip to main content
Log in

Extension of the operating frequency range of a dielectric radio absorber with the help of frequency-selective surfaces

  • Radio Phenomena in Solids and Plasma
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A detailed study of the efficiency of frequency-selective surfaces for extension of the operating frequency range of a dielectric radio absorber is presented. The radio absorber is fabricated from the layer of a homogeneous carbon black filled material and a frequency-selective surface made of thin metal rings placed inside or on the surface of the absorber. It is shown theoretically and experimentally that insertion of a frequency-selective surface into a dielectric radio absorber makes it possible to almost double the range of operating frequencies without increasing the thickness of the absorber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. N. Starostenko, A. P. Vinogradov, and S. T. Kibets, J. Commun. Technol. Electron. 44, 761 (1999).

    Google Scholar 

  2. K. N. Rozanov, IEEE Trans. Antennas and Propag. 48, 1230 (2000).

    Article  Google Scholar 

  3. F. Terracher and G. Bergnic, J. Electromagn. Waves Appl. 13, 1725 (1999).

    Article  Google Scholar 

  4. Y. Sha, K. A. Jose, C. P. Neo, and V. K. Vigia, Microwave Opt. Technol. Lett. 32, 245 (2002).

    Article  Google Scholar 

  5. H.-T. Liu, H.-F. Cheng, Z.-Y. Chu, and D.-Y. Zhang, Mater. Des., 28, 2166 (2007).

    Article  Google Scholar 

  6. H. Rahman, J. Dowling, and P. K. Saha, J. Mat. Proc. Techn. 54, 21 (1995).

    Article  Google Scholar 

  7. Y. Yuan, Z. Shen, IEEE Antennas Wireless Propag. Lett. 6, 388 (2007).

    Article  Google Scholar 

  8. S. Chakravarty, R. Mittra, and N. R. Williams, IEEE Trans. Microw. Tech. 49, 1050 (2001).

    Article  Google Scholar 

  9. S. Chakravarty, R. Mittra, and N. R. Williams, IEEE Trans. Antennas and Propag. 50, 284 (2002).

    Article  Google Scholar 

  10. B. A. Munk, P. Munk, and J. Prior, IEEE Trans. Antennas and Propag. 55, 186 (2007).

    Article  Google Scholar 

  11. A. V. Lopatin, Yu. N. Kazantsev, N. E. Kazantseva, V.N. Apletalin, V. P. Mal’tsev, A. D. Shatrov, and P. Saha, J. Commun. Technol. Electron. 53, 1114 (2008).

    Article  Google Scholar 

  12. Yu. N. Kazantsev, A. V. Lopatin, N. E. Kazantseva, et al., IEEE Trans. Antennas and Propag. 58, 1227 (2010).

    Article  Google Scholar 

  13. G. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook (Plenum, New York, 1970).

    Google Scholar 

  14. V. N. Apletalin, Yu. N. Kazantsev, V. P. Mal’tsev, V. S. Solosin, and A. D. Shatrov, J. Commun. Technol. Electron. 48, 469 (2003).

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © V.A. Babayan, Yu.N. Kazantsev, A.V. Lopatin, V.P. Mal’tsev, N.E. Kazantseva, 2011, published in Radiotekhnika i Elektronika, 2011, Vol. 56, No. 11, pp. 1377–1382.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babayan, V.A., Kazantsev, Y.N., Lopatin, A.V. et al. Extension of the operating frequency range of a dielectric radio absorber with the help of frequency-selective surfaces. J. Commun. Technol. Electron. 56, 1357–1362 (2011). https://doi.org/10.1134/S1064226911110040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226911110040

Keywords

Navigation