Skip to main content
Log in

Thermoactivated fracture of graphene subjected to tensile strain

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Graphene draws the attention of researchers due to its unique properties-in particular, record-high tensile strength. The time to fracture (TTF) of defect-free graphene strained by tension at a nonzero temperature has been studied by the method of molecular dynamics (MD). It is established that the time to thermoactivated fracture has a probabilistic character and obeys an exponential distribution. The mean TTF is proportional to the area of the graphene sheet and obeys the Arrhenius-Zhurkov law as a function of temperature and applied stress. The dependence of the activation energy for graphene fracture on the applied stress and sample area has been extrapolated to values of these parameters relevant for practical applications. The mechanism of graphene fracture has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  2. A. H. Castro Neto and K. Novoselov, Rep. Progr. Phys. 74, 082501 (2011).

    Article  ADS  Google Scholar 

  3. W. Choi, I. Lahiri, R. Seelaboyina, et al., Crit. Rev. Solid State 35, 52 (2010).

    Article  Google Scholar 

  4. Y. Shao, J. Wang, H. Wu, et al., Electroanalysis 22, 1027 (2010).

    Article  Google Scholar 

  5. X. Li, K. Maute, M. L. Dunn, et al., Phys. Rev. B 81, 245318 (2010).

    Article  ADS  Google Scholar 

  6. F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci, Phys. Rev. B 81, 035411 (2010).

    Article  ADS  Google Scholar 

  7. M. J. Majid and S. S. Savinskii, Tech. Phys. Lett. 37, 519 (2011).

    Article  ADS  Google Scholar 

  8. Yu. A. Baimova, S. V. Dmitriev, A. V. Savin, and Yu. S. Kivshar, Phys. Solid State 54, 866 (2012).

    Article  ADS  Google Scholar 

  9. T. Zhu and J. Li, Prog. Mater. Sci. 55, 710 (2010).

    Article  Google Scholar 

  10. S. V. Dmitriev, Yu. A. Baimova, A. V. Savin, and Yu. S. Kivshar, JETP Lett. 93, 571 (2011).

    Article  ADS  Google Scholar 

  11. A. B. Zhao and N. R. Aluru, J. Appl. Phys. 108, 064321 (2010).

    Article  ADS  Google Scholar 

  12. S. N. Zhurkov, Vestn. Akad. Nauk SSSR, No. 11, 78 (1957).

    Google Scholar 

  13. S. N. Zhurkov, J. Fract. Mech. 1, 311 (1965).

    Google Scholar 

  14. S. N. Zhurkov, Vestn. Akad. Nauk SSSR, No. 3, 46 (1968).

    Google Scholar 

  15. J. Bailey, The Glass Industry 20, 21 (1939).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Iskandarov.

Additional information

Original Russian Text © A.M. Iskandarov, S.V. Dmitriev, 2013, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 39, No. 4, pp. 1–8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iskandarov, A.M., Dmitriev, S.V. Thermoactivated fracture of graphene subjected to tensile strain. Tech. Phys. Lett. 39, 185–188 (2013). https://doi.org/10.1134/S1063785013020211

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785013020211

Keywords

Navigation