Skip to main content
Log in

Memory and nonlinear transport effects in charging–discharging of a supercapacitor

  • Physics of Nanostructures
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We report on the results of analysis of the kinetics of charge–discharge current of Panasonic supercapacitors in a wide range of time from 10–1 to 104 s. The non-Debye behavior of relaxation observed earlier by us and other authors is confirmed experimentally, and the influence of the supercapacitor charging regime on this process for various previous histories (values of applied voltage, charging time, and load resistance) is analyzed. The results are compared with available experimental data for paper–oil and electrolytic capacitors and with the results of calculations in the linear response model. It is found that in contrast to conventional capacitors, the response of the supercapacitor under investigation to variations of the charging regime does not match the linear response model. The relation of this nonlinearity to processes in the double electric layer, the morphology of the porous electrode, and the effect of charge reversal in pores is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamental and Technological Applications (Kluwer–Academic–Plenum, New York, 1999).

    Book  Google Scholar 

  2. A. Schneuwly and R. Gallay, Proceedings of the PCIM (Power Conversion and Intelligent Motion), Rossens, Switzerland, 2000.

    Google Scholar 

  3. Y. F. Chen, Y. Y. Li, and M. G. Deng, Electronic Components and Materials 27, 6 (2008).

    Google Scholar 

  4. M. Winter, and R. J. Brodd, Chem. Rev. 104, 4245 (2004).

    Article  Google Scholar 

  5. P. Sharma and T. S. Bhatti, Energy Convers. Manage. 51, 2901 (2010).

    Article  Google Scholar 

  6. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, J. Phys. Chem. C 113, 13103 (2009).

    Article  Google Scholar 

  7. L. L. Zhang, X. Zhao, M. D. Stoller, Y. Zhu, H. Ji, S. Muralis, and R. S. Ruoff, Nano Lett. 12, 1806 (2012).

    Article  ADS  Google Scholar 

  8. D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, N. Yumura, and S. Iijima, Nat. Mater. 5, 987 (2006).

    Article  ADS  Google Scholar 

  9. E. Frackowiak, Phys. Chem. Chem. Phys. 9, 1774 (2007).

    Article  Google Scholar 

  10. S. Buller, E. Karden, D. Kok, and R. W. De Doncker, in Proceedings of the 36th IEEE Industry Applications Conference on IAS Annual Meeting, Chicago, 2001, Vol. 4, pp. 2500–2504.

    Google Scholar 

  11. F. Belhachemi, S. Rael, and B. Davat, in Proceedings of the 35th IEEE Industry Applications Conference on IAS Annual Meeting, Rome, 2000, Vol. 5, pp. 3069–3076.

    Google Scholar 

  12. J. J. Quintana, A. Ramos, and I. Nuez, in Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and Its Applications, 2006, Vol. 2, pp. 432–436.

    Google Scholar 

  13. S. Westerlun and L. Ekstam, “Capacitor theory,” IEEE Trans. Dielectr. Electr. Insul. 1, 826 (2006).

    Article  Google Scholar 

  14. V. Uchaikin, R. Sibatov, and D. Uchaikin, Phys. Scr. 136, 014002 (2009).

    Article  Google Scholar 

  15. R. E. Vermillion, Eur. J. Phys. 19, 173 (1998).

    Article  Google Scholar 

  16. N. Bertrand, J. Sabatier, O. Briat, and J. M. Vinassa, Nonlinear Sci. 15, 1327 (2010).

    Article  Google Scholar 

  17. B. A. Zon, arXiv:1003.3917 (2010).

    Google Scholar 

  18. W. G. Glöckle and T. F. Nonnenmacher, J. Stat. Phys. 71, 741 (1993).

    Article  ADS  Google Scholar 

  19. Y. Feldman, A. Puzenko, and Y. Ryabov, Chem. Phys. 284, 139 (2002).

    Article  ADS  Google Scholar 

  20. R. T. Sibatov, V. V. Uchaikin, and D. V. Uchaikin, Fractional Dynamics and Control (Springer, New York, 2012). pp. 293–301.

    Book  MATH  Google Scholar 

  21. V. V. Uchaikin and R. T. Sibatov, Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems (World Scientific, 2013).

    Book  MATH  Google Scholar 

  22. A. Yu, V. Chabot, and J. Zhang, Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamental and Applications (CRC, 2013).

    Google Scholar 

  23. V. V. Uchaikin, Method of Fractional Derivatives (Artishok, Ul’yanovsk, 2008).

    Google Scholar 

  24. W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 2008). Vol. 2.

    MATH  Google Scholar 

  25. T. K. Saha and P. Purkait, IEEE Trans. Dielectr. Electr. Insul. 11, 144 (2004).

    Article  Google Scholar 

  26. T. K. Saha and P. Purkait, IEEE Trans. Power Deliv. 23, 252 (2008).

    Article  Google Scholar 

  27. T. K. Saha and P. Purkait, IEEE Trans. Dielectr. Electr. Insul. 15, 568 (2008).

    Article  Google Scholar 

  28. U. Gafvert, L. Adeen, M. Tapper, P. Ghasemi, and B. Jonsson, in Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials, Xi’an, China 2000, Vol. 2, pp. 825–830.

    Article  Google Scholar 

  29. A. Küchler and T. Bedel, Eur. Trans. Electr. Power 11, 65 (2001).

    Article  Google Scholar 

  30. G. V. Merrett and A. S. Weddell, in Proceedings of the 9th International Conference on Networked Sensing Systems, Antwerp, Belgium, 2012, pp. 1–5.

    Google Scholar 

  31. Technical Guide of Electric Double Layer Capacitors (Panasonic Electronic Devices, 2011). Edition 7.4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. Sibatov.

Additional information

Original Russian Text © V.V. Uchaikin, A.S. Ambrozevich, R.T. Sibatov, S.A. Ambrozevich, E.V. Morozova, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 61, No. 2, pp. 95–104.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchaikin, V.V., Ambrozevich, A.S., Sibatov, R.T. et al. Memory and nonlinear transport effects in charging–discharging of a supercapacitor. Tech. Phys. 61, 250–259 (2016). https://doi.org/10.1134/S1063784216020249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784216020249

Keywords

Navigation