Skip to main content
Log in

Evolutionary aspect of protein self-organization

Technical Physics Aims and scope Submit manuscript

Abstract

Numerous experimental data (published in 1988–2006) show that, when an open protein-water system far from thermodynamic equilibrium is dehydrated (dried), abiogenic self-organization of the protein invariably takes place, which complicates the structure and also results in the formation of a 3D supramolecular architecture with synchronous replication of spiral vortices and domains (cells) with nuclei having spiral clockwise and counterclockwise symmetry typical of protein in the living organism. When a solvent evaporates, say, from a multicomponent solution, such as blood serum, a protein structure arises the morphology of which copies the morphology of the protein one-component system. Thus, the competing activity of protein is observed when it experiences phase transition in the course of self-organization. In light of a new evolutionary chemical theory based on the Rudenko concept, these data allow one to put forward a hypothesis that protein exhibits evolutionary properties under conditions far from thermodynamic equilibrium. This hypothesis relies on the assumption that the energetically active structure of protein self-organizing in the course of its phase transition may generate energy necessary for catalysis and autocatalysis when a one-component protein-water system dries out. An important piece of evidence in favor of this hypothesis is the presence of the basic type of symmetry (spiral mirror clockwise or counterclockwise symmetry) under the given nonequilibrium conditions in vitro, which is characteristic of animate nature, protein in the living organism in vivo, and abiogenic self-organization of protein in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. E. Rapis, Pis’ma Zh. Tekh. Fiz. 14, 1561 (1988) [Sov. Tech. Phys. Lett. 14, 679 (1988)].

    Google Scholar 

  2. E. Rapis, Pis’ma Zh. Tekh. Fiz. 21(5), 13 (1995) [Tech. Phys. Lett. 31, 321 (1995)].

    Google Scholar 

  3. E. Rapis, Pis’ma Zh. Tekh. Fiz. 23(4), 28 (1997) [Tech. Phys. Lett. 28, 263 (1997)].

    Google Scholar 

  4. E. Rapis, Zh. Tekh. Fiz. 70(1), 122 (2000) [Tech. Phys. 45, 121 (2000)].

    Google Scholar 

  5. E. Rapis, Zh. Tekh. Fiz. 71(10), 104 (2001) [Tech. Phys. 46, 1307 (2001).

    Google Scholar 

  6. E. Rapis, Zh. Tekh. Fiz. 71(10), 104 (2001) [Tech. Phys. 46, 1307 (2001)].

    Google Scholar 

  7. E. Rapis, Zh. Tekh. Fiz. 72(4), 139 (2002) [Tech. Phys. 47, 510 (2002).

    Google Scholar 

  8. E. Gol’braikh, E. Rapis, and S. S. Moiseev, Zh. Tekh. Fiz. 73(10), 116 (2003) [Tech. Phys. 48, 1333 (2003)].

    Google Scholar 

  9. E. Rapis, Protein and Life (Self-Assembling and Symmetry of Protein Nanostructures) (MiltaPKPTIT, Moscow, 2003; Filobiblon, Yerusalem, 2003).

    Google Scholar 

  10. E. Rapis, Zh. Tekh. Fiz. 73(12), 76 (2003) [Tech. Phys. 48, 1575 (2003)].

    Google Scholar 

  11. E. Rapis, Zh. Tekh. Fiz. 73(4), 137 (2003) [Tech. Phys. 48, 516 (2003)].

    Google Scholar 

  12. E. Rapis, Zh. Tekh. Fiz. 73(12), 76 (2003) [Tech. Phys. 48, 1575 (2003)].

    Google Scholar 

  13. E. Rapis, Zh. Tekh. Fiz. 74(4), 117 (2004) [Tech. Phys. 49, 494 (2004)].

    Google Scholar 

  14. E. Rapis, Zh. Tekh. Fiz.75(6), 107 (2005) [Tech. Phys. 50, 780 (2005)].

    Google Scholar 

  15. E. Rapis, Zh. Tekh. Fiz. 75(9), 129 (2005) [Tech. Phys. 50, 1236 (2005)].

    Google Scholar 

  16. E. Rapis, Zh. Tekh. Fiz. 76(2), 121 (2006) [Tech. Phys. 51, 268 (2006)].

    Google Scholar 

  17. A. P. Rudenko, Theory of Self-Development of Open Catalytic Systems (MGU, Moscow, 1969) [in Russian].

    Google Scholar 

  18. I. Prigogine and I. Stengers, Order out of Chaos: Man’s New Dialogue with Nature (Heinemann, London, 1984; Progress, Moscow, 1986).

    Google Scholar 

  19. G. Nicolis and I. Prigogine, Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1977; Mir, Moscow, 1979).

    Google Scholar 

  20. J. M. Lehn, Proc. Natl. Acad. Sci. USA 99, 4763 (2002).

    Article  ADS  Google Scholar 

  21. A. M. Butlerov, Selected Works on Organic Chemistry (Izd. Akad. Nauk SSSR, Moscow, 1951) [in Russian].

    Google Scholar 

  22. Yu. M. Romanovskii, V. A. Vasil’ev, and V. G. Yakhno, “Autowave Processes,” in Modern Problems of Physics Series (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E. Rapis, 2008, published in Zhurnal Tekhnicheskoĭ Fiziki, 2008, Vol. 78, No. 6, pp. 110–115.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapis, E. Evolutionary aspect of protein self-organization. Tech. Phys. 53, 783–788 (2008). https://doi.org/10.1134/S1063784208060182

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784208060182

PACS numbers

Navigation