Skip to main content
Log in

Semiconductor-metal transition in selenium under shock compression

  • Solids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Phase transitions in selenium are studied by time-resolved measurements of the electrical conductivity under shock compression at a pressure of up to 32 GPa. The pressure dependence of the electrical conductivity (σ(P)) has two portions: a sharp increase at P < 21 GPa and a plateau at P > 21 GPa. The experimental data and the temperature estimates indicate that, at P < 21 GPa, selenium is in the semiconductor state. The energy gap of semiconducting selenium decreases substantially under compression. At P > 21 GPa, the electrical conductivity saturates at ∼104 Ω−1 cm−1. Such a high value of the electrical conductivity shows the effective semiconductor-metal transition taking place in shock-compressed selenium. Experiments with samples having different initial densities demonstrate the effect of temperature on the phase transition. For example, powdered selenium experiences the transition at a lower shock pressure than solid selenium. Comparison of the temperature estimates with the phase diagram of selenium shows that powdered selenium metallizes in a shock wave as a result of melting. The most plausible mechanism behind the shock-induced semiconductor-metal transition in solid selenium is melting or the transition in the solid phase. Under shock compression, the metallic phase arises without a noticeable time delay. After relief, the metallic phase persists for a time, delaying the reverse transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Minomura and H. G. Drickamer, J. Phys. Chem. Solids 23, 451 (1962).

    Article  Google Scholar 

  2. S. Minomura, G. A. Samara, and H. G. Drickamer, J. Appl. Phys. 33, 3196 (1962).

    Article  Google Scholar 

  3. J. Jamieson, Science 139, 762 (1963).

    ADS  Google Scholar 

  4. A. Jayaraman, W. Klement, and G. C. Kennedy, Phys. Rev. 130, 540 (1963).

    Article  ADS  Google Scholar 

  5. M. N. Pavlovskiĭ, Fiz. Tverd. Tela (Leningrad) 9, 3192 (1967) [Sov. Phys. Solid State 9, 2514 (1967)].

    Google Scholar 

  6. S. S. Nabatov, A. N. Dremin, V. I. Postnov, and V. V. Yakushev, Pis’ma Zh. Tekh. Fiz. 5(3), 143 (1979) [Sov. Tech. Phys. Lett. 5, 56 (1979)].

    Google Scholar 

  7. G. B. Abdullaev and D. Sh. Abdinov, Physics of Selenium (Elm, Baku, 1975) [in Russian].

    Google Scholar 

  8. S. S. Chang and A. B. Bestul, J. Chem. Thermodyn. 6, 325 (1974).

    Article  Google Scholar 

  9. H. L. Suchan, S. Wiederhorn, and H. G. Drickamer, J. Chem. Phys. 31, 355 (1959).

    Article  Google Scholar 

  10. A. S. Balchan and H. G. Drickamer, J. Chem. Phys. 34, 1948 (1961).

    Article  Google Scholar 

  11. B. M. Riggleman and H. G. Drickamer, J. Chem. Phys. 37, 446 (1962).

    Article  Google Scholar 

  12. B. M. Riggleman and H. G. Drickamer, J. Chem. Phys. 38, 2721 (1963).

    Article  Google Scholar 

  13. J. Witting, Phys. Rev. Lett. 15, 159 (1965).

    Article  ADS  Google Scholar 

  14. D. R. McCann and L. Cartz, J. Chem. Phys. 56, 2552 (1972).

    Article  Google Scholar 

  15. J. Witting, J. Chem. Phys. 58, 2220 (1973).

    Article  Google Scholar 

  16. W. Fuhs, P. Schlotter, and J. Stuke, Phys. Status Solidi 57, 587 (1973).

    Google Scholar 

  17. A. R. Moodenbaugh, C. T. Wu, and R. Viswanathan, Solid State Commun. 13, 1413 (1973).

    Article  Google Scholar 

  18. N. Soga, M. Kunugi, and R. Ota, J. Phys. Chem. Solids 34, 2143 (1973).

    Google Scholar 

  19. K. Aoki, O. Shimomura, and S. Minomura, in Proceedings of the 4th International Conference on High Pressure, Kyoto, 1974, pp. 314–316.

  20. S. Minomura, K. Aoki, and O. Shimomura, in Proceedings of the 6th International Conference on Amorphous and Liquid Semiconductors, Leningrad, 1975 (Nauka, Leningrad, 1976), pp. 289–293.

    Google Scholar 

  21. M. C. Gupta and A. L. Ruoff, J. Appl. Phys. 49, 5880 (1978).

    Article  ADS  Google Scholar 

  22. F. P. Bundy and K. J. Dunn, J. Chem. Phys. 71, 1550 (1979).

    Article  ADS  Google Scholar 

  23. K. J. Dunn and F. P. Bundy, J. Appl. Phys. 51, 3246 (1980).

    Article  ADS  Google Scholar 

  24. G. Parthasarathy, K. J. Rao, and E. S. R. Gopal, Solid State Commun. 52, 867 (1984).

    Article  Google Scholar 

  25. V. V. Brazhkin, R. N. Voloshin, and S. V. Popova, Pis’ma Zh. Éksp. Teor. Fiz. 50, 392 (1989) [JETP Lett. 50, 424 (1989)].

    Google Scholar 

  26. V. V. Brazhkin, S. V. Popova, and R. N. Voloshin, Physica B 265, 64 (1999).

    Article  ADS  Google Scholar 

  27. Y. Akahama, M. Kobayashi, and H. Kawamura, Phys. Rev. B 47, 20 (1993).

    Article  ADS  Google Scholar 

  28. Y. Ohmasa, I. Yamamoto, M. Yao, and H. Endo, J. Phys. Soc. Jpn. 64, 4766 (1995).

    Article  Google Scholar 

  29. Y. Ohmasa, I. Yamamoto, and H. Endo, J. Non-Cryst. Solids 205–207, 57 (1996).

    Article  Google Scholar 

  30. I. Yamamoto, Y. Ohmasa, and H. Endo, J. Non-Cryst. Solids 250–252, 423 (1999).

    Article  Google Scholar 

  31. T. T. Cole and J. W. Lyle, Rev. Sci. Instrum. 42, 1258 (1971).

    Article  ADS  Google Scholar 

  32. V. F. Degtereva and V. N. Sikorov, Fiz. Tverd. Tela (Leningrad) 19, 2201 (1977) [Sov. Phys. Solid State 19, 1289 (1977)].

    Google Scholar 

  33. K. Kani, T. Yamada, and M. Abe, in Shock Waves in Condensed Matter, Ed. by Y. M. Gupta (Plenum, New York, 1986), pp. 477–482.

    Google Scholar 

  34. R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, Experimental Data on Shock Compressibility and Adiabatic Expansion of Condensed Substances (RFYaTs VNIIEF, Sarov, 2001) [in Russian].

    Google Scholar 

  35. G. I. Kuzmin, V. V. Pai, and I. V. Yakovlev, Experimental-Analytical Methods in Problems of Dynamic Loading of Materials (Izd. SO RAN, Novosibirsk, 2002) [in Russian].

    Google Scholar 

  36. S. D. Gilev and A. M. Trubachev, Pis’ma Zh. Tekh. Fiz. 8, 914 (1982) [Sov. Tech. Phys. Lett. 8, 396 (1982)].

    Google Scholar 

  37. K. Nagayama, Appl. Phys. Lett. 38, 109 (1981).

    Article  ADS  Google Scholar 

  38. E. I. Bichenkov, S. D. Gilev, and A. M. Trubachev, Prikl. Mekh. Tekh. Fiz., No. 2, 132 (1989).

  39. A. A. Barmin, O. A. Mel’nik, A. B. Prishchepenko, et al., Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 166 (1988).

  40. S. D. Gilev and A. M. Trubachev, Prikl. Mekh. Tekh. Fiz., No. 6, 61 (1988).

  41. S. D. Gilev and A. M. Trubachev, J. Phys.: Condens. Matter. 16, 8139 (2004).

    Article  ADS  Google Scholar 

  42. S. D. Gilev, Fiz. Goreniya Vzryva 41, 128 (2005).

    Google Scholar 

  43. S. D. Gilev and T. Yu. Mikhailova, Zh. Tekh. Fiz. 66(10), 109 (1996) [Tech. Phys. 41, 1029 (1996)].

    Google Scholar 

  44. S. D. Gilev and T. Yu. Mihailova, J. Phys. IV 5 (1997), Colloq. C3, Suppl. J. Phys. III, No. 7: Proceedings of the 5th International Conference on Mechanical and Physical Behavior of Materials under Dynamic Loading (EURODYMAT 97), 1997, Toledo, Spain (Les Editions de Physique, Toledo, 1997), pp.C3-211–C3-216.

  45. S. D. Gilev, in Proceedings of the 1995 International Conference on Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena, Ed. by L. E. Murr, K. P. Staudhammer, and M. A. Meyers (Elsevier, Amsterdam, 1995), pp. 785–792.

    Google Scholar 

  46. K.-H. Oh and P.-A. Persson, J. Appl. Phys. 65, 3852 (1989).

    Article  ADS  Google Scholar 

  47. S. D. Gilev, Fiz. Goreniya Vzryva 37, 121 (2001).

    Google Scholar 

  48. R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, The Equation of State of Solids from Shock Wave Studies in High-Velocity Impact Phenomena, Ed. by R. Kinslow (Academic, New York, 1970; Mir, Moscow, 1973).

    Google Scholar 

  49. Thermal Constants of Substances, Ed. by V. P. Glushko, et al., (Nauka, Moscow, 1964–1981), Vols. 1–10.

    Google Scholar 

  50. V. M. Glazov, S. N. Chizhevskaya, and N. N. Glagoleva, Liquid Semiconductors (Nauka, Moscow, 1967; Plenum, New York, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.D. Gilev, 2006, published in Zhurnal Tekhnicheskoĭ Fiziki, 2006, Vol. 76, No. 7, pp. 41–47.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilev, S.D. Semiconductor-metal transition in selenium under shock compression. Tech. Phys. 51, 860–866 (2006). https://doi.org/10.1134/S1063784206070073

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784206070073

PACS numbers

Navigation