Skip to main content
Log in

Electronic structure of the conduction band upon the formation of ultrathin fullerene films on the germanium oxide surface

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of the investigation of the electronic structure of the conduction band in the energy range 5–25 eV above the Fermi level E F and the interfacial potential barrier upon deposition of aziridinylphenylpyrrolofullerene (APP-C60) and fullerene (C60) films on the surface of the real germanium oxide ((GeO2)Ge) have been presented. The content of the oxide on the (GeO2)Ge surface has been determined using X-ray photoelectron spectroscopy. The electronic properties have been measured using the very low energy electron diffraction (VLEED) technique in the total current spectroscopy (TCS) mode. The regularities of the change in the fine structure of total current spectra (FSTCS) with an increase in the thickness of the APP-C60 and C60 coatings to 7 nm have been investigated. A comparison of the structures of the FSTCS maxima for the C60 and APP-C60 films has made it possible to reveal the energy range (6–10 eV above the Fermi level E F) in which the energy states are determined by both the π* and σ* states and the FSTCS spectra have different structures of the maxima for the APP-C60 and unsubstituted C60 films. The formation of the interfacial potential barrier upon deposition of APP-C60 and C60 on the (GeO2)Ge surface is accompanied by an increase in the work function of the surface E vacE F by the value of 0.2–0.3 eV, which corresponds to the transfer of the electron density from the substrate to the organic films under investigation. The largest changes occur with an increase in the coating thickness to 3 nm, and with further deposition of APP-C60 and C60, the work function of the surface changes only slightly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Jo, J.-R. Pouliot, D. Wynands, S. D. Collins, J. Y. Kim, T. L. Nguyen, H. Y. Woo, Y. Sun, M. Leclerc, and A. J. Heeger, Adv. Mater. (Weinheim) 25 34, 4783 (2013).

    Article  Google Scholar 

  2. O. V. Kozlov, Y. N. Luponosov, S. A. Ponomarenko, N. Kausch-Busies, D. Yu. Paraschuk, Y. Olivier, D. Beljonne, J. Cornil, and M. S. Pshenichnikov, Adv. Energy Mater. 5 (7), 1401657 (2015).

    Google Scholar 

  3. V. A. Zakrevskii and N. T. Sudar’, Phys. Solid State 55 7, 1395 (2013).

    Article  ADS  Google Scholar 

  4. I. E. Gracheva, V. A. Moshnikov, E. V. Maraeva, S. S. Karpova, O. A. Alexsandrova, N. I. Alekseyev, V.V. Kuznetsov, G. Olchowik, K. N. Semenov, A. V. Startseva, A. V. Sitnikov, and J. M. Olchowik, J. Non-Cryst. Solids 358 2, 433 (2012).

    Article  ADS  Google Scholar 

  5. A. A. Ahmad Zebari, M. Kolmer, and J. S. Prauzner-Bechcicki, Appl. Surf. Sci. 332, 403 (2015).

    Article  ADS  Google Scholar 

  6. A. S. Komolov, Tech. Phys. 49 5, 630 (2004).

    Article  Google Scholar 

  7. Q. Cai, B. Xu, L. Ye, T. Tang, S. Huang, X. Du, X. Bian, J. Zhang, Z. Di, Q. Jin, and J. Zhao, Appl. Surf. Sci. 316, 46 (2014).

    Article  ADS  Google Scholar 

  8. A. N. Aleshin, I. P. Shcherbakov, and I. N. Trapeznikova, Phys. Solid State 56 2, 405 (2014).

    Article  ADS  Google Scholar 

  9. A. N. Aleshin, I. P. Shcherbakov, A. S. Komolov, V. N. Petrov, and I. N. Trapeznikova, Org. Electron. 16, 186 (2015).

    Article  Google Scholar 

  10. S. Godlewski and M. Szymonski, Int. J. Mol. Sci. 14 2, 2946 (2013).

    Article  Google Scholar 

  11. M. Marks, S. Sachs, C. H. Schwalb, A. Schöll, and U. Höfer, J. Chem. Phys. 139 12, 124701 (2013).

    Article  ADS  Google Scholar 

  12. J. K. Sørensen, J. Fock, A. H. Pedersen, A. B. Petersen, K. Jennum, K. Bechgaard, K. Kilså, V. Geshkin, J. Cornil, T. Bjørnholm, and M. B. Nielsen, J. Org. Chem. 76 1, 245 (2011).

    Article  Google Scholar 

  13. C. A. Martin, D. Ding, J. K. Sørensen, and T. Bjørnholm, J. Am. Chem. Soc. 130, 13198 (2008).

    Article  Google Scholar 

  14. A. S. Konev, A. F. Khlebnikov, and H. Frauendorf, J. Org. Chem. 76 15, 6218 (2011).

    Article  Google Scholar 

  15. K. X. Steirer, G. A. MacDonald, S. Olthof, J. Gantz, E. L. Ratcliff, A. Kahn, and N. R. Armstrong, J. Phys. Chem. C 117 43, 22331 (2013).

    Article  Google Scholar 

  16. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, A. A. Gavrikov, A. E. Khlopov, S. N. Akhremchik, M. V. Zimina, Yu. A. Panina, A. V. Povolotskii, A. S. Konev, and A. F. Khlebnikov, Phys. Solid State 56 8, 1659 (2014).

    Article  ADS  Google Scholar 

  17. A. S. Komolov, E. F. Lazneva, S. N. Akhremtchik, N. S. Chepilko, and A. A. Gavrikov, J. Phys. Chem. C 117 24, 12633 (2013).

    Article  Google Scholar 

  18. T. Kaufman-Osborn, K. Kiantaj, C.-P. Chang, and A. C. Kummel, Surf. Sci. 630, 254 (2014).

    Article  ADS  Google Scholar 

  19. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, A. V. Baramygin, G. D. Zashikhin, and S. A. Pshenichnyuk, Phys. Solid State 58 2, 377 (2016).

    Article  ADS  Google Scholar 

  20. A. S. Komolov and P. J. Møller, Appl. Surf. Sci. 215–213, 497 (2003).

    Article  Google Scholar 

  21. M. P. Seah and W. A. Dench, Surf. Interface Anal. 1 1, 2 (1979).

    Article  Google Scholar 

  22. A. S. Komolov, S. N. Akhremtchik, and E. F. Lazneva, Spectrochim. Acta, Part A 798, 708 (2011).

    Article  ADS  Google Scholar 

  23. I. Bartos, Prog. Surf. Sci. 59, 197 (1998).

    Article  ADS  Google Scholar 

  24. S. A. Pshenichnyuk, A. V. Kukhto, I. N. Kukhto, and A. S. Komolov, Tech. Phys. 56 6, 754 (2011).

    Article  Google Scholar 

  25. S. A. Pshenichnyuk and A. S. Komolov, J. Phys. Chem. A 116 1, 761 (2012).

    Article  Google Scholar 

  26. A. Modelli and S. A. Pshenichnyuk, Phys. Chem. Chem. Phys. 15 5, 1588 (2013).

    Article  Google Scholar 

  27. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, G. D. Zashikhin, A. V. Baramygin, P. Si, S. N. Akhremtchik, and A. A. Gavrikov, J. Electron Spectrosc. Relat. Phenom. 205, 52 (2015).

    Article  Google Scholar 

  28. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, G. A. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Revision D.01 (Gaussian, Wallingford, Connecticut, United States, 2009).

    Google Scholar 

  29. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  30. N. Tallaj and M. Buyle-Bodin, Surf. Sci. 69, 428 (1977).

    Article  ADS  Google Scholar 

  31. D. Friedrich, K. Henkel, M. Richter, and D. Schmeisser, BioNanoSci 1 4, 218 (2011).

    Article  Google Scholar 

  32. A. P. Hitchcock, P. Fischer, A. Gedanken, and M. B. Robin, J. Phys. Chem. 91, 531 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Komolov.

Additional information

Original Russian Text © A.S. Komolov, E.F. Lazneva, N.B. Gerasimova, Yu.A. Panina, A.V. Baramygin, G.D. Zashikhin, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 6, pp. 1216–1220.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komolov, A.S., Lazneva, E.F., Gerasimova, N.B. et al. Electronic structure of the conduction band upon the formation of ultrathin fullerene films on the germanium oxide surface. Phys. Solid State 58, 1257–1261 (2016). https://doi.org/10.1134/S106378341606024X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341606024X

Navigation