Skip to main content
Log in

Infrared spectroscopy of silicon carbide layers synthesized by the substitution of atoms on the surface of single-crystal silicon

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper presents the results of the infrared spectroscopic study of silicon carbide epitaxial layers grown by the substitution of atoms on the surface of single-crystal silicon. It has been found that, in the infrared spectra, there is a band at 798 cm–1, which corresponds to a transverse optical (TO) phonon in the lattice of silicon carbide. The parameters of disordered silicon carbide on the surface of pores between the epitaxial layer of silicon carbide and the silicon substrate have been determined. It has been revealed that, in the infrared spectra of silicon carbide, there is a band in the wavenumber range of 960 cm–1. A hypothesis has been proposed, according to which this band corresponds to the energy of the previously theoretically predicted elastic dipole consisting of an elastically interacting carbon atom located in an interstitial position and a silicon vacancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Kukushkin and A. V. Osipov, J. Phys. D: Appl. Phys. 47, 313 001 (2014).

    Article  Google Scholar 

  2. S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Phys. Solid State 56 (8), 1507 (2014).

    Article  ADS  Google Scholar 

  3. S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Ross. Khim. Zh. 57 (6), 36 (2013).

    Google Scholar 

  4. L. Dong, G. Sun, L. Zheng, X. Liu, F. Zhang, G. Yan, W. Zhao, L. Wang, X. Li, and Z. Wang, J. Phys. D: Appl. Phys. 45, 245102 (2012).

    Article  ADS  Google Scholar 

  5. J. E. Spanier and I. P. Herman, Phys. Rev. B: Condens. Matter 61, 10437 (2000).

    Article  ADS  Google Scholar 

  6. J. A. A. Engelbrecht, I. J. van Rooyen, A. Henry, E. Janzen, and E. J. Olivier, Physica B (Amsterdam) 407, 1525 (2012).

    Article  ADS  Google Scholar 

  7. M. F. MacMillan, R. P. Devaty, W. J. Choyke, D. R. Goldstein, J. E. Spanier, and A. D. Kurtz, J. Appl. Phys. 80, 2412 (1996).

    Article  ADS  Google Scholar 

  8. O. Pluchery and J.-M. Costantini, J. Phys. D: Appl. Phys. 45, 495101 (2012).

    Article  Google Scholar 

  9. I. K. Beisembetov, K. Kh. Nusupov, N. B. Beisenkhanov, S. K. Zharikov, B. K. Kenzhaliev, T. K. Akhmetov, and B. Zh. Seitov, Vestn. Nizhegorod. Univ. im. N. I. Lobachevskogo, No. 4, 42 (2013).

    Google Scholar 

  10. M. D. Sciacca, A. J. Mayur, E. Oh, A. K. Ramdas, S. Rodriguez, K. Furdyna, M. R. Melloch, C. P. Beetz, and W. S. Yoo, Phys. Rev. B: Condens. Matter 51, 7744 (1995).

    Article  ADS  Google Scholar 

  11. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  12. Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, ACS Photonics 1, 718 (2014).

    Article  Google Scholar 

  13. D. Li, N. M. Lawandy, and R. Zia, Opt. Express 21, 20903 (2013).

    Google Scholar 

  14. T. S. Perova, J. Wasyluk, S. A. Kukushkin, A. V. Osipov, N. A. Feoktistov, and S. A. Grudinkin, Nanoscale Res. Lett. 5, 1507 (2010).

    Article  ADS  Google Scholar 

  15. H. Mutschke, A. C. Andersen, D. Clement, Th. Henning, and G. Peiter, Astron. Astrophys. 345, 187 (1999).

    ADS  Google Scholar 

  16. H. J. Hrostowski and R. H. Kaiser, Phys. Rev. 107, 966 (1957).

    Article  ADS  Google Scholar 

  17. F. A. Johnson, Proc. Phys. Soc. 73, 265 (1959).

    Article  ADS  Google Scholar 

  18. R. T. Holm, P. H. Klein, and P. E. R. Nordquist, J. Appl. Phys. 60, 1479 (1986).

    Article  ADS  Google Scholar 

  19. H. Hobert, H. H. Dunken, G. Peiter, W. Stier, M. Diegel, and H. Stafast, Appl. Phys. A: Mater. Sci. Process. 69, 69 (1999).

    Article  ADS  Google Scholar 

  20. D. W. Berreman, Phys. Rev. 130, 2193 (1963).

    Article  ADS  Google Scholar 

  21. S. A. Kukushkin and A. V. Osipov, Izv. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 122 (2013).

    Google Scholar 

  22. Modern Crystallography, Ed. by V. K. Vainshtein, Vol. 2: V. K. Vainshtein, V. M. Fridkin, and V. L. In-denbom, Structure of Crystals (Nauka, Moscow, 1979; Springer-Verlag, New York, 2000).

  23. C. A. Londos, M. S. Potsidi, and E. Stakakis, Physica B (Amsterdam) 340–342, 551 (2003).

    Article  Google Scholar 

  24. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, London, 1970; Nauka, Moscow, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kukushkin.

Additional information

Original Russian Text © S.A. Grudinkin, V.G. Golubev, A.V. Osipov, N.A. Feoktistov, S.A. Kukushkin, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 12, pp. 2469–2474.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grudinkin, S.A., Golubev, V.G., Osipov, A.V. et al. Infrared spectroscopy of silicon carbide layers synthesized by the substitution of atoms on the surface of single-crystal silicon. Phys. Solid State 57, 2543–2549 (2015). https://doi.org/10.1134/S1063783415120136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415120136

Keywords

Navigation