Skip to main content
Log in

Dislocation loops in solid and hollow semiconductor and metal nanoheterostructures

  • Mechanical Properties, Physics Of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper has considered theoretical models of misfit stress relaxation in solid and hollow “core-shell” composite nanoparticles of semiconductors and metals due to the formation of dislocations of two types: circular prismatic dislocation loops (PDLs) lying at the interface in the equatorial nanoparticle plane and rectangular PDLs growing from the free surface of such a nanoparticle and extended along its surface. Critical conditions of nucleation of such loops have been compared. It has been shown that either a coherent (dislocation-free) state of the nanoparticle or its relaxed state with a circular PDL at the interface is favorable in the case of a relatively small lattice misfit between the core and shell materials. For large misfits, the coherent state is unfavorable. In this case, as the shell thickness increases, it can be expected that, first, rectangular PDLs will appear, then circular PDLs will be formed while retaining rectangular PDLs, and then rectangular PDLs will gradually grow and transform to circular PDLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, Small 6, 2781 (2010).

    Article  Google Scholar 

  2. S. Behrens, Nanoscale 3, 877 (2011).

    Article  ADS  Google Scholar 

  3. C. De Mello Donega, Chem. Soc. Rev. 40, 1512 (2011).

    Article  Google Scholar 

  4. D. Shi, N. M. Bedford, and H. S. Cho, Small 7, 2549 (2011).

    Article  Google Scholar 

  5. R. G. Chaudhuri and S. Paria, Chem. Rev. 112, 2373 (2012).

    Article  Google Scholar 

  6. L. Cheng, C. Wang, and Z. Liu, Nanoscale 5, 23 (2013).

    Article  ADS  Google Scholar 

  7. C. S. Kim, B. Duncan, B. Creran, and V. M. Rotello, Nano Today 8, 439 (2013).

    Article  Google Scholar 

  8. G. Z. Chen, S. Desinan, R. Rosei, F. Rosei, and D. L. Ma, Chem. Commun. (Cambridge) 48, 8009 (2012).

    Article  Google Scholar 

  9. H. M. Song, D. H. Anjum, R. Sougrat, M. N. Hedhili, and N. M. Khashab, J. Mater. Chem. 22, 25003 (2012).

    Article  Google Scholar 

  10. B. T. Sneed, C. N. Brodsky, C. H. Kuo, L. K. Lamontagne, Y. Jiang, Y. Wang, F. Tao, W. Huang, and C. K. Tsung, J. Am. Chem. Soc. 135, 14691 (2013).

    Article  Google Scholar 

  11. R. G. Chaudhuri and S. Paria, J. Phys. Chem. C 117, 23385 (2013).

    Article  Google Scholar 

  12. L. I. Trusov, M. Yu. Tanakov, V. G. Gryaznov, A. M. Kaprelov, and A. E. Romanov, J. Cryst. Growth 114, 133 (1991).

    Article  ADS  Google Scholar 

  13. M. Yu. Gutkin, Strength and Plasticity of Nanocomposites (St. Petersburg Polytechnic University, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  14. M. Yu. Gutkin, Int. J. Eng. Sci. 61, 59 (2012).

    Article  Google Scholar 

  15. Y. Ding, F. Fan, Z. Tian, and Z. L. Wang, J. Am. Chem. Soc. 132, 12480 (2010).

    Article  Google Scholar 

  16. N. Bhattarai, G. Casillas, A. Ponce, and M. Jose-Yacaman, Surf. Sci. 609, 161 (2013).

    Article  ADS  Google Scholar 

  17. Y. Ding, X. Sun, Z. L. Wang, and S. Sun, Appl. Phys. Lett. 100, 111603 (2012).

    Article  ADS  Google Scholar 

  18. X. Chen, Y. Lou, A. C. Samia, and C. Burda, Nano Lett. 3, 799 (2003).

    Article  ADS  Google Scholar 

  19. M. Yu. Gutkin, A. L. Kolesnikova, S. A. Krasnitsky, and A. E. Romanov, Phys. Solid State 56(4), 723 (2014).

    Article  ADS  Google Scholar 

  20. M. Yu. Gutkin, A. L. Kolesnikova, S. A. Krasnitckii, A. E. Romanov, and A. G. Shalkovskii, Scr. Mater. 83, 1 (2014).

    Article  Google Scholar 

  21. M. Yu. Gutkin and A. M. Smirnov, Phys. Solid State 56, 703 (2014).

    ADS  Google Scholar 

  22. M. Yu. Gutkin and A. M. Smirnov, J. Phys.: Conf. Ser. 541, 012007 (2014).

    ADS  Google Scholar 

  23. M. Yu. Gutkin, I. A. Ovid’ko, and A. G. Sheinerman, J. Phys.: Condens. Matter 15, 3539 (2003).

    ADS  Google Scholar 

  24. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968; Atomizdat, Moscow, 1972).

    Google Scholar 

  25. A. L. Kolesnikova, M. Yu. Gutkin, S. A. Krasnitckii, and A. E. Romanov, Int. J. Solids Struct. 50, 1839 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Gutkin.

Additional information

Original Russian Text © M.Yu. Gutkin, S.A. Krasnitckii, A.M. Smirnov, A.L. Kolesnikova, A.E. Romanov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 6, pp. 1158–1163.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutkin, M.Y., Krasnitckii, S.A., Smirnov, A.M. et al. Dislocation loops in solid and hollow semiconductor and metal nanoheterostructures. Phys. Solid State 57, 1177–1182 (2015). https://doi.org/10.1134/S1063783415060153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415060153

Keywords

Navigation