Skip to main content
Log in

Point defects in silicon carbide as a promising basis for spectroscopy of single defects with controllable quantum states at room temperature

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The spin and optical properties of silicon vacancy defects in silicon carbide of the hexagonal 6H polytype have been investigated using photoluminescence, electron paramagnetic resonance, and X-band optically detected magnetic resonance. It has been shown that different configurations of these defects can be used to create an optical alignment of their spin sublevels as in the case of low temperatures and at temperatures close to room temperature (T = 293 K). The main specific feature of silicon vacancy centers in silicon carbide is that the zero-magnetic-field-splitting parameter of some centers remains constant with variations in the temperature, which indicates prospects for the use of these centers for quantum magnetometry. It has also been shown that a number of centers, on the contrary, are characterized by a strong dependence of the zero-magnetic-field-splitting parameter on the temperature, which indicates prospects for the use of these centers as temperature sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Baranov, A. P. Bundakova, A. A. Soltamova, S. B. Orlinskii, I. V. Borovykh, R. Zondervan, R. Verberk, and J. Schmidt, Phys. Rev. B: Condens. Matter 83, 125203 (2011).

    Article  ADS  Google Scholar 

  2. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. Van de Walle, and D. D. Awschalom, Proc. Natl. Acad. Sci. USA 107, 8513 (2010).

    Article  ADS  Google Scholar 

  3. S. Castelletto, B. C. Johnson, and A. Boretti, Adv. Opt. Mater. 1, 609 (2013).

    Article  Google Scholar 

  4. M. Wagner, B. Magnusson, W. M. Chen, E. Janzen, E. Sorman, C. Hallin, and J. L. Lindstrom, Phys. Rev. B: Condens. Matter 62, 16555 (2000).

    Article  ADS  Google Scholar 

  5. D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. Soltamova, P. Baranov, V. Ilyin, and G. V. Astakhov, Phys. Rev. Lett. 109, 226402 (2012).

    Article  ADS  Google Scholar 

  6. H. Kraus, V. A. Soltamov, D. Riedel, S. Vath, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, Nat. Phys. 10, 157 (2014).

    Article  Google Scholar 

  7. V. A. Soltamov, A. A. Soltamova, P. G. Baranov, and I. I. Proskuryakov, Phys. Rev. Lett. 108, 226402 (2012).

    Article  ADS  Google Scholar 

  8. P. G. Baranov, I. V. Il’in, K. N. Mokhov, M. V. Muzafarova, S. B. Orlinskii, and Ya. Shmidt, JETP Lett. 82 (7), 441 (2005).

    Article  ADS  Google Scholar 

  9. F. Fuchs, V. A. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, Sci. Rep. 3, 1637 (2013).

    Article  ADS  Google Scholar 

  10. H. Kraus, V. A. Soltamov, F. Fuchs, D. Simin, A. Sperlich, P. G. Baranov, G. V. Astakhov, and V. Dyakonov, Sci. Rep. 4, 5303 (2014).

    Article  ADS  Google Scholar 

  11. A. I. Veinger, V. A. Il’in, Yu. M. Tairov, and V. F. Tsvetkov, Sov. Phys. Semicond. 13 (12), 1385 (1979); V. S. Vainer, and E. A. Il’in, Sov. Phys. Solid State 23 (8), 1432 (1981).

    Google Scholar 

  12. E. Sörman, N. T. Son, W. M. Chen, O. Kordina, C. Hallin, and E. Janzen, Phys. Rev. B: Condens. Matter 61, 2613 (2000).

    Article  ADS  Google Scholar 

  13. S. B. Orlinski, J. Schmidt, E. N. Mokhov, and P. G. Baranov, Phys. Rev. B: Condens. Matter 67, 125207 (2003).

    Article  ADS  Google Scholar 

  14. T. Wimbauer, B. Meyer, A. Hofstaetter, A. Scharmann, and H. Overhof, Phys. Rev. B: Condens. Matter 56, 7384 (1997).

    Article  ADS  Google Scholar 

  15. N. Mizuochi, S. Yamasaki, H. Takizawa, N. Morishita, T. Ohshima, H. Itoh, and J. Isoya, Phys. Rev. B: Condens. Matter 66, 235202 (2002).

    Article  ADS  Google Scholar 

  16. P. G. Baranov, I. V. Ilyin, A. A. Soltamova, and E. N. Mokhov, Phys. Rev. B: Condens. Matter 77, 085120 (2008).

    Article  ADS  Google Scholar 

  17. F. Jelezko and J. Wrachtrup, Phys. Status Solidi A 203, 3207 (2006).

    Article  ADS  Google Scholar 

  18. H. J. von Bardeleben, J. L. Cantin, I. Vickridge, and G. Battistig, Phys. Rev. B: Condens. Matter 62, 10126 (2000).

    Article  Google Scholar 

  19. L. C. Bassett, F. J. Heremans, C. G. Yale, B. B. Buckley, and D. D. Awschalom, Phys. Rev. Lett. 107, 266403 (2011).

    Article  ADS  Google Scholar 

  20. A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. von Borczyskowski, Science (Washington) 276, 2012 (1997).

    Article  Google Scholar 

  21. B. M. Chernobrod and G. P. Berman, J. Appl. Phys. 97, 014903 (2005).

    Article  ADS  Google Scholar 

  22. C. L. Degen, Appl. Phys. Lett. 92, 243111 (2008).

    Article  ADS  Google Scholar 

  23. J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, Nat. Phys. 4, 810 (2008).

    Article  Google Scholar 

  24. D. M. Toyli, C. F. de las Casas, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, Proc. Natl. Acad. Sci. USA 110, 8417 (2013).

    Article  ADS  Google Scholar 

  25. V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L. S. Bouchard, and D. Budker, Phys. Rev. Lett. 104, 070801 (2010).

    Article  ADS  Google Scholar 

  26. T. C. Hain, F. Fuchs, V. A. Soltamov, P. G. Baranov, G. V. Astakhov, T. Hertel, and V. Dyakonov, Appl. Phys. Lett. 115, 133508 (2014).

    Google Scholar 

  27. H. von Bardeleben, J. Cantin, L. Henry, and M. Barthe, Phys. Rev. B: Condens. Matter 62, 10841 (2000).

    Article  Google Scholar 

  28. S. Castelletto, B. C. Johnson, V. Iv’ady, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, Nat. Mater. 13, 151 (2013).

    Article  ADS  Google Scholar 

  29. A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X. L. Feng, and D. D. Awschalom, Nat. Commun. 4, 1819 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Soltamov.

Additional information

Original Russian Text © V.A. Soltamov, D.O. Tolmachev, I.V. Il’in, G.V. Astakhov, V.V. Dyakonov, A.A. Soltamova, P.G. Baranov, 2015, published in Fizika Tverdogo Te la, 2015, Vol. 57, No. 5, pp. 877–885.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltamov, V.A., Tolmachev, D.O., Il’in, I.V. et al. Point defects in silicon carbide as a promising basis for spectroscopy of single defects with controllable quantum states at room temperature. Phys. Solid State 57, 891–899 (2015). https://doi.org/10.1134/S1063783415050285

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415050285

Keywords

Navigation