Skip to main content
Log in

Near field of terahertz radiation transmitted through a lateral non-centrosymmetric grating

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The transmission of a terahertz (THz) wave through a grating of metallic strips deposited on a flat surface of a dielectric medium has been considered. It has been assumed that the unit cell of the lateral grating does not have a spatial inversion center and the grating period is small compared to the radiation wavelength. The found amplitudes and phases of the spatial harmonics of the transmitted wave in the near field have been used to calculate the components of the tensor of asymmetry parameters responsible for the generation of photocurrents in a doped quantum well embedded in the non-centrosymmetric system under consideration. It has been found that, at a strip height greater than the skin depth, the parameters of the transmitted spatial harmonics are nearly independent of the height. It has been shown that the metallic grating exhibits strong birefringence, and the radiation polarized either circularly or linearly at an angle of 45° with respect to the principal axes of the lateral grating induces superposition of photocurrents owing to the circular or linear electronic ratchet effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Belinicher and B. I. Sturman, Sov. Phys.—Usp. 23(3), 199 (1980).

    Article  ADS  Google Scholar 

  2. B. I. Sturman and V. M. Fridkin, Photogalvanic Effect in Media without the Center of Symmetry and Related Phenomena (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  3. P. Reimann, Phys. Rep. 361, 57 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Ratchets and Brownian Motors: Basics, Experiments and Applications, Ed. by H. Linke, Appl. Phys. A: Mater. Sci. Process. 75 (Spec. Issue), 167352 (2002).

    Google Scholar 

  5. A. Lorke, S. Wimmer, B. Jager, J. P. Kotthaus, W. Wegscheider, and M. Bichler, Physica B (Amsterdam) 249–251, 312 (1998).

    Article  Google Scholar 

  6. A. M. Song, P. Omling, L. Samuelson, W. Seifert, I. Shorubalko, and H. Zirath, Appl. Phys. Lett. 79, 1357 (2001).

    Article  ADS  Google Scholar 

  7. S. Sassine, Yu. Krupko, J.-C. Portal, Z. D. Kvon, R. Murali, K. P. Martin, G. Hill, and A. D. Wieck, Phys. Rev. B: Condens. Matter 78, 045431 (2008).

    Article  ADS  Google Scholar 

  8. A. D. Chepelianskii, M. V. Entin, L. I. Magarill, and D. L. Shepelyansky, Eur. Phys. J. B 56, 323 (2007); A. D. Chepelianskii, M. V. Entin, L. I. Magarill, and D. L. Shepelyansky, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys, 78, 041127 (2008).

    Article  ADS  Google Scholar 

  9. L. Ermann and D. L. Shepelyansky, Eur. Phys. J. B 79, 357 (2011).

    Article  ADS  Google Scholar 

  10. P. Olbrich, E. L. Ivchenko, R. Ravash, T. Feil, S. D. Danilov, J. Allerdings, D. Weiss, D. Schuh, W. Wegscheider, and S. D. Ganichev, Phys. Rev. Lett. 103, 090603 (2009).

    Article  ADS  Google Scholar 

  11. P. Olbrich, J. Karch, E. L. Ivchenko, J. Kamann, B. März, M. Fehrenbacher, D. Weiss, and S. D. Ganichev, Phys. Rev. B: Condens. Matter 83, 165320 (2011).

    Article  ADS  Google Scholar 

  12. E. L. Ivchenko and S. D. Ganichev, JETP Lett. 93(11), 673 (2011).

    Article  ADS  Google Scholar 

  13. A. V. Nalitov, L. E. Golub, and E. L. Ivchenko, Phys. Rev. B: Condens. Matter 86, 115301 (2012).

    Article  ADS  Google Scholar 

  14. V. V. Popov, D. V. Fateev, T. Otsuji, Y. M. Meziani, D. Coquillat, and W. Knap, Appl. Phys. Lett. 99, 243504 (2011).

    Article  ADS  Google Scholar 

  15. T. Otsuji, T. Watanabe, S. A. Boubanga Tombet, A. Satou, W. M. Knap, V. V. Popov, M. Ryzhii, and V. Ryzhii, IEEE Trans. Terahertz Sci. Technol. 3, 63 (2013).

    Article  Google Scholar 

  16. V. V. Popov, Appl. Phys. Lett. 102, 253504 (2013).

    Article  ADS  Google Scholar 

  17. T. Watanabe, S. A. Boubanga-Tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. M. Meziani, Yuye Wang, H. Minamide, H. Ito, and T. Otsuji, IEEE Sens. J. 13, 89 (2013).

    Article  Google Scholar 

  18. L. Li, J. Opt. Soc. Am. A 13(9), 1870 (1996).

    Article  ADS  Google Scholar 

  19. Diffractive Optics for Industrial and Commercial Applications, Ed. by J. Turunen and F. Wyrowski (Wiley, New York, 1998), p. 440.

    Google Scholar 

  20. D. V. Fateev, V. V. Popov, and M. S. Shur, Semiconductors 44(11), 1406 (2010).

    Article  ADS  Google Scholar 

  21. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, Sang-Hyun Oh, G. D. Boreman, and M. B. Raschke, Phys. Rev. B: Condens. Matter 86, 235147 (2012).

    Article  ADS  Google Scholar 

  22. P. Olbrich, C. Drexler, L. E. Golub, S. N. Danilov, V. A. Shalygin, R. Yakimova, S. Lara-Avila, S. Kubatkin, B. Redlich, R. Huber, and S. D. Ganichev, Phys. Rev. B: Condens. Matter 88, 245425 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Ivchenko.

Additional information

Original Russian Text © E.L. Ivchenko, M.I. Petrov, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 9, pp. 1772–1778.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivchenko, E.L., Petrov, M.I. Near field of terahertz radiation transmitted through a lateral non-centrosymmetric grating. Phys. Solid State 56, 1833–1839 (2014). https://doi.org/10.1134/S1063783414090145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414090145

Keywords

Navigation