Skip to main content
Log in

Synthesis of epitaxial silicon carbide films through the substitution of atoms in the silicon crystal lattice: A review

  • Reviews
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A review of recent advances in the field of epitaxial growth of SiC films on Si by means of a new method of epitaxial substitution of film atoms for substrate atoms has been presented. The basic statements of the theory of the new method used for synthesizing SiC on Si have been considered and extensive experimental data have been reported. The elastic energy relaxation mechanism implemented during the growth of epitaxial SiC films on Si by means of the new method of substitution of atoms has been described. This method consists in substituting a part of carbon atoms for silicon matrix atoms with the formation of silicon carbide molecules. It has been found experimentally that the substitution for matrix atoms occurs gradually without destroying the crystalline structure of the matrix. The orientation of the film is determined by the “old” crystalline structure of the initial silicon matrix rather than by the silicon substrate surface only, as is the case where conventional methods are used for growing the films. The new growth method has been compared with the classical mechanisms of thin film growth. The structure and composition of the grown SiC layers have been described in detail. A new mechanism of first-order phase transformations in solids with a chemical reaction through an intermediate state promoting the formation of a new-phase nuclei has been discussed. The mechanism providing the occurrence of a wide class of heterogeneous chemical reactions between the gas phase and a solid has been elucidated using the example of the chemical interaction of the CO gas with the single-crystal Si matrix. It has been shown that this mechanism makes it possible to grow a new type of templates, i.e., substrates with buffer transition layers for growing wide-band-gap semiconductor films on silicon. A number of heteroepitaxial films of wide-band-gap semiconductors, such as SiC, AlN, GaN, and AlGaN on silicon, whose quality is sufficient for the fabrication of a wide class of micro- and optoelectronic devices, have been grown on the SiC/Si substrate grown by solid-phase epitaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Lebedev, Khim. Zhizn’, No. 4, 14 (2006).

    Google Scholar 

  2. E. G. Acheson, Chem. News 68, 179 (1893).

    Google Scholar 

  3. J. A. Lely, Ber. Dtsch. Keram. Ges. 32, 229 (1955).

    Google Scholar 

  4. Silicon Carbide: Materials, Processing, and Devices, Ed. by Zhe Chuan Feng and Jian H. Zhao (Taylor and Francis New York (2004), Vols. 1–2.

    Google Scholar 

  5. A. Fissel, Phys. Rep. 379, 149 (2003).

    Article  ADS  Google Scholar 

  6. A. A. Lebedev, Semicond. Sci. Technol. 21, R17 (2006).

    Article  ADS  Google Scholar 

  7. V. Luchinin and Yu. Tairov, Sovrem. Elektron. 7, 12 (2009).

    Google Scholar 

  8. Yu. M. Tairov and V. F. Tsvetkov, J. Cryst. Growth 43, 209 (1978).

    Article  ADS  Google Scholar 

  9. Yu. A. Vodakov, E. N. Mokhov, M. G. Ramm, and A. O. Raenkov, Krist. Tech. 14, 729 (1979).

    Article  Google Scholar 

  10. E. Tschumak, K. Tonisch, J. Pezoldt, and D. J. As, Mater. Sci. Forum 615–617, 943 (2009).

    Article  Google Scholar 

  11. Kwang Chul Kim, Chan Il Park, Jae Il Roh, Kee Suk Nahm, and Young Hun Seo, J. Vac. Sci. Technol., A 19(5), 2636 (2001).

    Article  ADS  Google Scholar 

  12. Y. H. Zhu, J. C. Zhang, Z. T. Chen, and T. Egawa, J. Appl. Phys. 106, 124506 (2009).

    Article  ADS  Google Scholar 

  13. F. Iacopi, G. Walker, Li Wang, L. Malesys, Shujun Ma, B.V. Cunning, and A. Iacopi, Appl. Phys. Lett. 102, 011908 (2013).

    Article  ADS  Google Scholar 

  14. A. Severinoa, C. Lockeb, R. Anzalonea, M. Camardaa, N. Pilusoa, A. La Magnaa, S. E. Saddowb, G. Abbondanzac, G. D’Arrigoa, and F. La Viaa, ECS Trans. 35, 99 (2011).

    Article  Google Scholar 

  15. V. M. Ivlev, L. I. Trusov, and V. A. Kholmyanskii, Structural Transformations in Thin Films (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  16. D. Kashchiev, Nucleation Basic Theory with Applications (Butterworth-Heinemann, Oxford, 2000).

    Google Scholar 

  17. F. M. Kuni, A. K. Shchekin, and A. P. Grinin, Phys.— Usp. 44(4), 331 (2001).

    Article  ADS  Google Scholar 

  18. V. P. Skripov and M. Z. Faizulin, Phase Transitions Solid Body-Liquid-Vapour and Thermodynamic Similarity (Fizmatlit, Moscow, 2003; Wiley, New York, 2006).

    Google Scholar 

  19. S. A. Kukushkin and V. V. Slezov, Dispersion Systems on Solid Surfaces (Evolutionary Approach): Mechanisms of the Formation of Thin Films (Nauka, St. Petersburg, 1996) [in Russian].

    Google Scholar 

  20. S. A. Kukushkin and A. V. Osipov, Encyclopedia of Nanoscience and Nanotechnology, Ed. by H. S. Nalwa (American Scientific, Los Angeles, United States, 2004), Vol. 8, p. 113

  21. A. Milchev, Electrocrystallization Fundamentals of Nucleation and Growth (Kluwer, New York, 2002).

    Google Scholar 

  22. O. P. Pchelyakov, Yu. B. Bolkhovityanov, A. V. Dvurechenskii, L. V. Sokolov, A. I. Nikiforov, A. I. Yakimov, and B. Voigtländer, Semiconductors 34(11), 1229 (2000).

    Article  ADS  Google Scholar 

  23. V. G. Dubrovskii, The Theory of Formation of Epitaxial Nanostructures (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  24. U. W. Pohl, Epitaxy of Semiconductors (Springer-Verlag, Berlin, 2013).

    Book  Google Scholar 

  25. V. G. Dubrovskii, Theoretical Foundations of the Technology of Semiconductor Nanostructures: A Textbook (St. Petersburg State University, St. Petersburg, 2006) [in Russian].

    Google Scholar 

  26. Z. R. Zytkiewicz, Thin Solid Films 412, 64 (2002).

    Article  ADS  Google Scholar 

  27. S. Nishino, C. Jacob 1, Y. Okui, S. Ohshima, and Y. Masuda, J. Cryst. Growth 237–239, 1250 (2002).

    Article  Google Scholar 

  28. R. F. Davis, T. Gehrke, K. J. Linthicuma, E. Preblea, P. Rajagopala, C. Ronningc, C. Zormand, and M. Mehregany, J. Cryst. Growth 231, 335 (2001).

    Article  ADS  Google Scholar 

  29. S. K. Gordeev, S. B. Korchagina, S. A. Kukushkin, and A. V. Osipov, RF Patent No. 2286616 (2006).

  30. S. K. Gordeev, S. B. Korchagina, S. A. Kukushkin, and A. V. Osipov, RF Patent No. 2286617 (2006).

  31. S. A. Kukushkin, A. V. Osipov, S. K. Gordeev, and S. B. Korchagina, Tech. Phys. Lett. 31(10), 859 (2005).

    Article  Google Scholar 

  32. S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, RF Patent No. 2363067 (2008).

  33. S. A. Kukushkin and A. V. Osipov, Phys. Solid State 50(7), 1238 (2008).

    Article  ADS  Google Scholar 

  34. S. A. Kukushkin and A. V. Osipov, Dokl. Phys. 57(5), 217 (2012).

    Article  ADS  Google Scholar 

  35. S. A. Kukushkin and A. V. Osipov, Mech. Solids 47(2), 216 (2013).

    Article  Google Scholar 

  36. S. A. Kukushkin and A. V. Osipov, J. Appl. Phys. 113, 024909 (2013).

    Article  ADS  Google Scholar 

  37. S. A. Kukushkin and A. V. Osipov, Semiconductors 47(12), 1551 (2013).

    Article  ADS  Google Scholar 

  38. S. A. Kukushkin and A. V. Osipov, J. Phys. D: Appl. Phys. 44 (2014) (in press).

  39. N. M. Emanuel and D. G. Knorre, Chemical Kinetics (Wiley, New York, 1973; Vysshaya Shkola, Moscow, 1984).

    Google Scholar 

  40. K. Sangwal, Etching of Crystals: Theory, Experiment, and Application (North Holland, Amsterdam, The Netherlands, 1987; Mir, Moscow, 1990).

    Google Scholar 

  41. S. A. Kukushkin and A. V. Osipov, Phys.—Usp. 41(10), 983 (1998).

    Article  ADS  Google Scholar 

  42. S. G. Zhukov, S. A. Kukushkin, A. V. Luk’yanov, A. V. Osipov, and N. A. Feoktistov, RF Patent No. 130996 (2013).

  43. J. W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon, Amsterdam, The Netherlands, 2002).

    Google Scholar 

  44. I. P. Kalinkin, S. A. Kukushkin, and A. V. Osipov, RF Patent No. 2323503 (2006).

  45. S. A. Kukushkin and A. V. Osipov, Phys. Solid State 56(4), 792 (2014).

    Article  ADS  Google Scholar 

  46. N. A. Feoktistov, S. A. Kukushkin, A. V. Osipov, and A. V. Luk’yanov, Patent No. 86351 (2008).

  47. L. M. Sorokin, N. V. Veselov, M. P. Shcheglov, A. E. Kalmykov, A. A. Sitnikova, N. A. Feoktistov, A. V. Osipov, and S. A. Kukushkin, Tech. Phys. Lett. 34(11), 992 (2008).

    Article  ADS  Google Scholar 

  48. M. E. Kompan, I. G. Aksyanov, I. V. Kul’kova, S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Phys. Solid State 51(12), 2469 (2009).

    Article  Google Scholar 

  49. T. S. Perova, J. Wasyluk, S. A. Kukushkin, A. V. Osipov, N. A. Feoktistov, and S. A. Grudinkin, Nanoscale Res. Lett. 5, 1507 (2010).

    Article  ADS  Google Scholar 

  50. T. S. Perova, J. Wasyluk, S. A. Kukushkin, A. V. Osipov, N. A. Feoktistov, and S. A. Grudinkin, Mater. Sci. Forum 645–648, 359 (2010).

    Google Scholar 

  51. I. G. Aksyanov, M. E. Kompan, and I. V. Kulikova, Phys. Solid State 52(9), 1850 (2010).

    Article  ADS  Google Scholar 

  52. I. G. Aksyanov, V. N. Bessolov, Yu. V. Zhilyaev, M. E. Kompan, E. V. Konenkova, S. A. Kukushkin, A. V. Osipov, N. A. Feoktistov, Sh. Sharofidinov, and M. P. Shcheglov, Tech. Phys. Lett. 34(6), 479 (2008).

    Article  ADS  Google Scholar 

  53. V. N. Bessolov, Yu. V. Zhilyaev, E. V. Konenkova, L. M. Sorokin, N. A. Feoktistov, Sh. Sharofidinov, M. P. Shcheglov, S. A. Kukushkin, L. I. Mets, and A. V. Osipov, Tech. Phys. Lett. 36(6), 496 (2010).

    Article  ADS  Google Scholar 

  54. L. M. Sorokin, A. E. Kalmykov, V. N. Bessolov, N. A. Feoktistov, A. V. Osipov, S. A. Kukushkin, and N. V. Veselov, Tech. Phys. Lett. 37(4), 326 (2011).

    Article  ADS  Google Scholar 

  55. S. A. Kukushkin, A. V. Osipov, E. V. Osipova, S. V. Razumov, and A. V. Kandakov, Opt. Zh. 78, 29 (2011).

    Google Scholar 

  56. V. N. Bessolov, Yu. V. Zhilyaev, E. V. Konenkova, L. M. Sorokin, N. A. Feoktistov, Sh. Sharofidinov, M. P. Shcheglov, S. A. Kukushkin, L. I. Mets, and A. V. Osipov, Opt. Zh. 78, 23 (2011).

    Google Scholar 

  57. A. V. Osipov, S. A. Kukushkin, N. A. Feoktistov, E. V. Osipova, N. Venugopalb, G. D. Vermab, Bipin Kumar Guptac, and A. Mitra, Thin Solid Films 520, 6836 (2012).

    Article  ADS  Google Scholar 

  58. S. A. Kukushkin, A. V. Osipov, S. A. Obukhov, D. B. Vcherashnii, and N. A. Feoktistov, Tech. Phys. Lett. 39(5), 488 (2013).

    Article  ADS  Google Scholar 

  59. S. A. Kukushkin, A. V. Osipov, S. G. Zhukov, E. E. Zavarin, V. V. Lundin, M. A. Sinitsyn, M. M. Rozhavskaya, A. F. Tsatsul’nikov, S. I. Troshkov, and N. A. Feoktistov, Tech. Phys. Lett. 38(3), 297 (2012).

    Article  ADS  Google Scholar 

  60. A. A. Lebedev, V. V. Zelenin, P. A. Abramov, S. P. Lebedev, A. N. Smirnov, L. M. Sorokin, M. P. Shcheglov, and R. Yakimova, Tech. Phys. Lett. 33(6), 524 (2007).

    Article  ADS  Google Scholar 

  61. Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, and SiGe, Ed. by M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur (Wiley, New York, 2001).

    Google Scholar 

  62. K. Sasaki, E. Sakuma, S. Misawa, S. Yoshida, and S. Gonda, Appl. Phys. Lett. 45, 72 (1984).

    Article  ADS  Google Scholar 

  63. M. Yamanaka, H. Daimon, E. Sakuma, S. Misawa, and S. Yoshida, J. Appl. Phys. 61, 599 (1987).

    Article  ADS  Google Scholar 

  64. M. J. Hernandez, G. Ferro, T. Chassagne, J. Dazord, and Y. Monteil, J. Cryst. Growth 253, 95 (2003).

    Article  ADS  Google Scholar 

  65. C. J. Mogab and H. J. Leamy, J. Appl. Phys. 45, 1075 (1974).

    Article  ADS  Google Scholar 

  66. Kwang Chul Kim, Chan II Park, Jae Il Roh, Kee Suk Nahm, and Young Hun Seo, J. Vac. Sci. Technol., A 19, 2636 (2001).

    Article  ADS  Google Scholar 

  67. L. K. Orlov, E. A. Steinman, T. N. Smyslova, N. L. Ivina, and A. N. Tereshchenko, Phys. Solid State 54(4), 708 (2012).

    Article  ADS  Google Scholar 

  68. Y. S. Wang, J. M. Li, L. Y. Lin, and F. F. Zhang, Appl. Surf. Sci. 148, 189 (1999).

    Article  ADS  Google Scholar 

  69. W.-Y. Chen, C. C. Chen, and J. Hwang, Cryst. Growth Des. 9, 2616 (2009).

    Article  Google Scholar 

  70. A. J. Steckl and J. P. Li, IEEE Trans. Electron Devices 39, 64 (1992).

    Article  ADS  Google Scholar 

  71. A. R. Bushroa, C. Jacob, H. Saijo, and S. Nishino, J. Cryst. Growth 271, 200 (2004).

    Article  ADS  Google Scholar 

  72. W. Attenberger, J. Lindner, V. Cimalla, and J. Pezoldt, Mater. Sci. Eng., B 61–62, 544 (1999).

    Article  Google Scholar 

  73. J. P. Li and A. J. Steckl, J. Electrochem. Soc. 142, 634 (1995).

    Article  Google Scholar 

  74. Yu. V. Trushin, E. E. Zhurkin, K. L. Safonov, A. A. Schmidt, V. S. Kharlamov, S. A. Korolev, M. N. Lubov, and J. Pezoldt, Tech. Phys. Lett. 30(8), 641 (2004).

    Article  ADS  Google Scholar 

  75. R. A. Andrievskii, Usp. Khim. 78, 889 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kukushkin.

Additional information

Original Russian Text © S.A. Kukushkin, A.V. Osipov, N.A. Feoktistov, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 8, pp. 1457–1485.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukushkin, S.A., Osipov, A.V. & Feoktistov, N.A. Synthesis of epitaxial silicon carbide films through the substitution of atoms in the silicon crystal lattice: A review. Phys. Solid State 56, 1507–1535 (2014). https://doi.org/10.1134/S1063783414080137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414080137

Keywords

Navigation