Skip to main content
Log in

Specific features of optical phonons in raman spectra of an array of vertical ZnO microrods on silicon

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The polarized Raman spectra of an array of vertical zinc oxide microrods prepared by the carbothermal synthesis on a Si(001) substrate have been investigated. The length and diameter of the rods are 9 ± 0.5 μm and 210 ± 50 nm, respectively. X-ray diffraction studies have confirmed the mutual crystallographic orientation [001]ZnO ‖ [001]Si in the direction normal to the substrate plane. In the Raman spectra of the rods, there are modes forbidden by selection rules for the single crystal: the A 1(TO) E high2 and modes in the scattering geometry \(x\left( {yz} \right)\bar x\) and the E 1(LO) mode in the geometry \(x\left( {zz} \right)\bar x\). It has been found that the spectra contain quasi-modes Q(TO) and Q(LO), the spectral position of which shifts with a variation in the angle of incidence of the exciting radiation. The angle range of propagation of the exciting radiation in the array of rods is estimated as ∼25° for a fixed angle of incidence by comparing the spectral shift of the quasi-modes with experimental data for the single crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Yang, F. Wan, S. Chen, and C. Jiang, Nanoscale Res. Lett. 4, 1486 (2009).

    Article  ADS  Google Scholar 

  2. V. Houskova, V. Stengla, S. Bakardjievaa, and N. Murafa, J. Phys. Chem. Solids 69, 1623 (2008).

    Article  ADS  Google Scholar 

  3. T. W. Hamann, A. B. F. Martinson, J. W. Elam, M. J. Pellin, and J. T. Hupp, Adv. Mater. (Weinheim) 20, 1560 (2008).

    Article  Google Scholar 

  4. M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P. Yang, J. Phys. Chem. B 110, 22652 (2006).

    Article  Google Scholar 

  5. L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, J. Phys. Chem. C 111, 18451 (2007).

    Article  Google Scholar 

  6. F. Decremps, J. Pellicer-Porres, A. M. Saitta, J.-C. Chervin, and A. Polian, Phys. Rev. B: Condens. Matter 65, 092101 (2002).

    Article  ADS  Google Scholar 

  7. H. Y. Shih, T. T. Chen, Y. C. Chen, T. H. Lin, L. W. Chang, and Y. F. Chen, Appl. Phys. Lett. 94, 021908 (2009).

    Article  ADS  Google Scholar 

  8. T. Gruber, G. M. Prinz, C. Kirchner, R. Kling, F. Reuss, W. Limmer, and A. Waag, J. Appl. Phys. 96, 289 (2004).

    Article  ADS  Google Scholar 

  9. J. D. Ye, S. Tripathy, F.-F. Ren, X. W. Sun, G. Q. Lo, and K. L. Teo, Appl. Phys. Lett. 94, 011913 (2009).

    Article  ADS  Google Scholar 

  10. T. L. Phan, R. Vincent, D. Cherns, N. X. Nghia, and V. V. Ursaki, Nanotechnology 19, 475702 (2008).

    Article  ADS  Google Scholar 

  11. P.-M. Chassaing, F. Demangeot, V. Paillard, A. Zwick, and N. Combe, Phys. Rev. B: Condens. Matter 77, 153306 (2008).

    Article  ADS  Google Scholar 

  12. R. Gupta, Q. Xiong, G. D. Mahan, and P. C. Eklund, Nano Lett. 3, 1745 (2003).

    Article  ADS  Google Scholar 

  13. R. Gupta, P. Bhattacharya, Yu. I. Yuzuk, K. Sreenivas, and R. S. Katiyar, J. Crys. Growth 287, 39 (2006).

    Article  ADS  Google Scholar 

  14. B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002).

    Article  ADS  Google Scholar 

  15. H. Msmurdie, M. Morris, E. Evans, B. Paretzkin, W. Wong-Ng, L. Ettlinger, and C. Hubbard, Powder Diffr. 1, 76 (1986).

    Google Scholar 

  16. R. Cusco, E. Alarcon-Llado, J. Ibanez, and L. Artus, Phys. Rev. B: Condens. Matter 75, 165202 (2007).

    Article  ADS  Google Scholar 

  17. R. Loudon, Adv. Phys. 13, 423 (1964).

    Article  ADS  Google Scholar 

  18. C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, Phys. Rev. 181, 1351 (1969).

    Article  ADS  Google Scholar 

  19. J. M. Calleja and M. Cardona, Phys. Rev. B: Solid State 16, 3753 (1977).

    Article  ADS  Google Scholar 

  20. E. Alarcon-Llado, R. Cusco, L. Artus, J. Jimenez, B. Wang, and M. Callahan, J. Phys.: Condens. Matter 20, 445211 (2008).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Lyanguzov.

Additional information

Original Russian Text © N.V. Lyanguzov, A.S. Anokhin, D.I. Levshov, E.M. Kaidashev, Yu.I. Yuzyuk, I.N. Zakharchenko, O.A. Bunina, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 3, pp. 542–548.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyanguzov, N.V., Anokhin, A.S., Levshov, D.I. et al. Specific features of optical phonons in raman spectra of an array of vertical ZnO microrods on silicon. Phys. Solid State 56, 561–567 (2014). https://doi.org/10.1134/S1063783414030184

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414030184

Keywords

Navigation