Physics of the Solid State

, Volume 55, Issue 9, pp 1976-1983

First online:

Molecular dynamics simulation of compression of single-layer graphene

  • A. E. GalashevAffiliated withInstitute of Industrial Ecology, Ural Branch of the Russian Academy of Sciences Email author 
  • , S. Yu. DubovikAffiliated withUral Federal University named after the First President of Russia B. N. Yeltsin (Ural State Technical University-UPI)

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The compression of a single-layer graphene sheet in the “zigzag” and “armchair” directions has been investigated using the molecular dynamics method. The distributions of the xy and yx stress components are calculated for atomic chains forming the graphene sheet. A graphene sheet stands significant compressive stresses in the “zigzag” direction and retains its integrity even at a strain of ∼0.35. At the same time, the stresses which accompany the compressive deformation of single-layer graphene in the “armchair” direction are more than an order in magnitude lower than corresponding characteristics for the “zigzag” direction. A compressive strain of ∼0.35 in the “armchair” direction fractures the graphene sheet into two parts.