Skip to main content
Log in

Yield strength of nanocrystalline materials under high-rate plastic deformation

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A high-rate plastic deformation of fine-grained materials has been considered as a result of competing processes of dislocation gliding in the grains and grain-boundary sliding. A structural model has been proposed for describing the grain-boundary sliding as a dominant mechanism of plasticity of nanocrystalline metals. The dependence of the yield strength on the material properties, temperature, and deformation rate has been studied numerically. For the adequate description of the experimental data and molecular dynamics calculations, it is necessary to take into account two parameters, namely, the barrier stress, which is dependent on the elastic constants of a material, and the boundary viscosity, which is substantially dependent on temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Nieman, J. R. Weertman, and R. W. Siegel, J. Mater. Res. 6, 1012 (1991).

    Article  ADS  Google Scholar 

  2. Y. M. Wang, K. Wang, D. Pan, K. Lu, K. J. Hemker, and E. Ma, Scr. Mater. 48, 1581 (2003).

    Article  Google Scholar 

  3. P. G. Sanders, J. A. Eastman, and J. R. Weertman, Acta Mater. 45, 4019 (1997).

    Article  Google Scholar 

  4. K. J. Van Vliet, S. Tsikata, and S. Suresh, Appl. Phys. Lett. 83, 1441 (2003).

    Article  ADS  Google Scholar 

  5. D. Wolf, V. Yamakov, S. R. Phillpot, A. Mukherjee, and H. Gleiter, Acta Mater. 53, 1 (2005).

    Article  Google Scholar 

  6. K. S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Mater. 51, 5743 (2003).

    Article  Google Scholar 

  7. R. A. Andrievskii and A. M. Glezer, Phys.-Usp. 52(4), 315 (2009).

    Article  ADS  Google Scholar 

  8. A. Yu. Kuksin, V. V. Stegailov, and A. V. Yanilkin, Phys. Solid State 50(11), 2069 (2008).

    Article  ADS  Google Scholar 

  9. H. Hahn, P. Mondal, and K. A. Padmanabhan, Nanostruct. Mater. 9, 603 (1997).

    Article  Google Scholar 

  10. N. Q. Vo, R. S. Averback, P. Bellon, and A. Caro, Phys. Rev. B: Condens. Matter 78, 241402(R) (2008).

    Article  ADS  Google Scholar 

  11. H. Conrad and K. Jung, Mater. Sci. Eng., A 391, 272 (2005).

    Article  Google Scholar 

  12. J. Schiotz, F. D. Di Tolla, and K. W. Jacobsen, Nature (London) 391, 561 (1998).

    Article  ADS  Google Scholar 

  13. A. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, Scr. Metall. 23, 1679 (1989).

    Article  Google Scholar 

  14. M. Dao, L. Lu, R. J. Asaro, J. T. M. De Hosson, and E. Ma, Acta Mater. 55, 4041 (2007).

    Article  Google Scholar 

  15. M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci. 51, 427 (2006).

    Article  Google Scholar 

  16. R. A. Andrievskii and A. V. Ragulya, Nanostructured Materials (Akademiya, Moscow, 2005) [in Russian].

    Google Scholar 

  17. M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials (Cambridge University Press, New York, 2009).

    MATH  Google Scholar 

  18. E. O. Hall, Proc. R. Soc. London, Ser. B 64, 474 (1951).

    Google Scholar 

  19. N. J. Petch, J. Iron Steel Inst., London 174, 25 (1953).

    Google Scholar 

  20. H. Van Swygenhoven, P. M. Derlet, and A. Hasnaoui, Acta Mater. 52, 2251 (2004).

    Article  Google Scholar 

  21. A. G. Froseth, P. M. Derlet, and H. V. Swygenhoven, Acta Mater. 52, 5870 (2004).

    Google Scholar 

  22. M. A. Meyers and E. Ashworth, Philos. Mag. 46, 73723 (1982).

    Google Scholar 

  23. R. Z. Valiev and I. V. Alexandrov, J. Mater. Res. 17, 1 (2002).

    Article  ADS  Google Scholar 

  24. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Science (Washington) 304, 422 (2004).

    Article  ADS  Google Scholar 

  25. Y. G. Zheng, H. W. Zhang, Z. Chen, C. Lu, and Y.-W. Mai, Phys. Lett. A 373, 570 (2009).

    Article  ADS  Google Scholar 

  26. J. Schiotz, T. Vegge, F. Di Tolla, and K. W. Jacobsen, Phys. Rev. B: Condens. Matter 60, 11971 (1999).

    Article  ADS  Google Scholar 

  27. A. V. Sergueeva, C. Song, R. Z. Valiev, and A. K. Mukherjee, Mater. Sci. Eng., A 339, 159 (2003).

    Article  Google Scholar 

  28. Y. Xu, J. Zhang, Y. Bai, and M. A. Meyers, Metall. Mater. Trans. A 39, 811 (2008).

    Article  Google Scholar 

  29. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Butterworth-Heinemann, Oxford, 1999; Nauka, Moscow, 2003).

    Google Scholar 

  30. S. Mercier, A. Molinari, and Y. Estrin, J. Mater. Sci. 42, 1455 (2007).

    Article  ADS  Google Scholar 

  31. B. Zhu, R. J. Asaro, P. Krysl, K. Zhang, and J. R. Weertman, Acta Mater. 54, 3307 (2006).

    Article  Google Scholar 

  32. G. E. Fougere, J. R. Weertman, R. W. Siegel, and S. Kim, Scr. Metall. Mater. 26, 1879 (1992).

    Article  Google Scholar 

  33. G. D. Hughes, S. D. Smith, C. S. Pande, H. R. Johnson, and R. W. Armstrong, Scr. Metall. Mater. 20, 93 (1986).

    Google Scholar 

  34. U. Erb, A. M. El-Sharik, G. Palumbo, and G. K. T. Aust, Nanostruct. Mater. 2, 383 (1993).

    Article  Google Scholar 

  35. C. A. Schuh, T. G. Nieh, and T. Yamasaki, Scr. Mater. 46, 735 (2002).

    Article  Google Scholar 

  36. H. Conrad, Nanotechnology 18, 325701 (2007).

    Article  Google Scholar 

  37. T. R. Malow, C. C. Koch, P. Q. Miraglia, and K. L. Murty, Mater. Sci. Eng., A 252, 36 (1998).

    Article  Google Scholar 

  38. M. Zhao, J. C. Li, and Q. Jiang, J. Alloys Compd. 361, 160 (2003).

    Article  Google Scholar 

  39. T. Shimokawa, A. Nakatani, and H. Kitagawa, Phys. Rev. B: Condens. Matter 71, 224110 (2005).

    Article  ADS  Google Scholar 

  40. H. V. Swygenhoven and A. Caro, Phys. Rev. B: Condens. Matter 58, 17 (1998).

    Google Scholar 

  41. H. Conrad and J. Narayan, Scr. Mater. 42, 1025 (2000).

    Article  Google Scholar 

  42. M. A. Shtremel’, Strength of Alloys, Part 2: Deformation (Moscow Institute of Steel and Alloys, Moscow, 1997) [in Russian].

    Google Scholar 

  43. R. W. Siegel and G. E. Fougere, Nanostruct. Mater. 6, 205 (1995).

    Article  Google Scholar 

  44. J. Schiøtz and K. W. Jakobsen, Science (Washington) 301, 1357 (2003).

    Article  ADS  Google Scholar 

  45. K. Kadau, P. S. Lomdahl, B. L. Holian, T. C. Germann, D. Kadau, P. Entel, D. E. Wolf, M. Kreth, and F. Westerhoff, Metall. Mater. Trans. A 35, 2719 (2004).

    Article  Google Scholar 

  46. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1953; Nauka, Moscow, 1978).

    MATH  Google Scholar 

  47. N. V. Chuvil’deev, Nonequilibrium Grain Boundaries in Metals: Theory and Applications (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  48. V. S. Krasnikov, A. Yu. Kuksin, A. E. Mayer, and A. V. Yanilkin, Phys. Solid State. 52(7), 1386 (2010).

    Article  ADS  Google Scholar 

  49. V. S. Krasnikov, A. E. Mayer, and A. P. Yalovets, Int. J. Plast. 27, 1294 (2011).

    Article  Google Scholar 

  50. M. W. Guinan and D. J. Steinberg, J. Phys. Chem. Solids 35, 1501 (1974).

    Article  ADS  Google Scholar 

  51. Y. M. Wang, E. M. Bringa, J. M. McNaney, M. Victoria, A. Caro, A. M. Hodge, R. Smith, B. Torralva, B. A. Remington, C. A. Schuh, H. Jamarkani, and M. A. Meyers, Appl. Phys. Lett. 88, 061917 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Borodin.

Additional information

Original Russian Text © E.N. Borodin, A.E. Mayer, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 4, pp. 759–766.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borodin, E.N., Mayer, A.E. Yield strength of nanocrystalline materials under high-rate plastic deformation. Phys. Solid State 54, 808–815 (2012). https://doi.org/10.1134/S1063783412040038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783412040038

Keywords

Navigation