Skip to main content
Log in

Transformation of the plasmon spectrum in a grating-gate transistor structure with spatially modulated two-dimensional electron channel

  • Workshop
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We present the theory of plasmon excitation in a grating-gate transistor structure with spatially modulated 2D electron channel. The plasmon spectrum varies depending on the electron density modulation in the transistor channel. We report on the frequency ranges of plasmon mode excitation in the gated and ungated regions of the channel and on the interaction of these different types of plasmon modes. We show that a constructive influence of the ungated regions of the electron channel considerably increases the intensity of the gated plasmon resonances and reduces the plasmon-resonance linewidth in the grating-gated transistor structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Shur and J.-Q. L Lu, IEEE Trans. Microwave Theory Techn. 48, 750 (2000).

    Article  ADS  Google Scholar 

  2. W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, Appl. Phys. Lett. 84, 2331 (2004).

    Article  ADS  Google Scholar 

  3. A. Satou, I. Khmyrova, V. Ryzhii, and M. S. Shur, Semicond. Sci. Technol. 18, 460 (2003).

    Article  ADS  Google Scholar 

  4. F. Teppe, W. Knap, D. Veksler, M. S. Shur, A. P. Dmitriev, V. Yu. Kachorovskii, and S. Rumyantsev, Appl. Phys. Lett. 87, 052107 (2005).

    Article  ADS  Google Scholar 

  5. A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valušis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, Appl. Phys. Lett. 89, 131926 (2006).

    Article  ADS  Google Scholar 

  6. V. I. Gavrilenko, E. V. Demidov, K. V. Maremyanin, S. V. Morozov, W. Knap, and J. Lusakowski, Fiz. Tekh. Poluprovodn. 41, 238 (2007) [Semiconductors 41, 232 (2007)].

    Google Scholar 

  7. A. V. Antonov, V. I. Gavrilenko, K. V. Maremyanin, S. V. Morozov, F. Teppe, and W. Knap, Fiz. Tekh. Poluprovodn. 43, 552 (2009) [Semiconductors 43, 223 (2009)].

    Google Scholar 

  8. A. V. Chaplik, Surf. Sci. Rep. 5, 289 (1985).

    Article  ADS  Google Scholar 

  9. V. V. Popov, A. N. Koudymov, M. Shur, and O. V. Polischuk, J. Appl. Phys. 104, 024508 (2008).

    Article  ADS  Google Scholar 

  10. V. V. Popov, O. V. Polischuk, W. Knap, and A. El Fatimy, Appl. Phys. Lett. 93, 263503 (2008).

    Article  ADS  Google Scholar 

  11. V. V. Popov, O. V. Polischuk, and M. S. Shur, J. Appl. Phys. 98, 033510 (2005).

    Article  ADS  Google Scholar 

  12. X. G. Peralta, S. J. Allen, M. C. Wanke, N. E. Harff, J. A. Simmons, M. P. Lilly, J. L. Reno, P. J. Burke, and J. P. Eisenstein, Appl. Phys. Lett. 81, 1627 (2002).

    Article  ADS  Google Scholar 

  13. V. V. Popov, O. V. Polischuk, T. V. Teperik, X. G. Peralta, S. J. Allen, N. J. M. Horing, and M. C. Wanke, J. Appl. Phys. 94, 3556 (2003).

    Article  ADS  Google Scholar 

  14. E. A. Shaner, M. Lee, M. C. Wanke, A. D. Grine, J. L. Reno, and S. J. Allen, Appl. Phys. Lett. 87, 193507 (2005).

    Article  ADS  Google Scholar 

  15. M. Lee, M. C. Wanke, and J. L. Reno, Appl. Phys. Lett. 86, 033501 (2005).

    Article  ADS  Google Scholar 

  16. E. A. Shaner, A. D. Grine, M. C. Wanke, Mark Lee, J. L. Reno, and S. J. Allen, IEEE Photon. Techn. Lett. 18, 1925 (2006).

    Article  ADS  Google Scholar 

  17. V. V. Popov, G. M. Tsymbalov, D. V. Fateev, and M. S. Shur, Int. J. High Speed Electron. Syst. 17, 557 (2007).

    Article  Google Scholar 

  18. V. V. Popov, G. M. Tsymbalov, and M. S. Shur, J. Phys.: Condens. Matter 20, 384208 (2008).

    Article  ADS  Google Scholar 

  19. T. Otsuji, Y. M. Meziani, T. Nishimura, T. Suemitsu, W. Knap, E. Sano, T. Asano, and V. V. Popov, J. Phys.: Condens. Matter 20, 384206 (2008).

    Article  ADS  Google Scholar 

  20. K. V. Marem’yanin, D. M. Ermolaev, D. V. Fateev, S. V. Morozov, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, V. V. Popov, and S. Yu. Shapoval, Pis’ma Zh. Tekh. Fiz. 36(8), 39 (2010) [Tech. Phys. Lett. 36 (4), 365 (2010)].

    Google Scholar 

  21. A. V. Muravjov, D. B. Veksler, V. V. Popov, O. V. Polischuk, N. Pala, X. Hu, R. Gaska, H. Saxena, R. E. Peale, and M. S. Shur, Appl. Phys. Lett. 96, 042105 (2010).

    Article  ADS  Google Scholar 

  22. L. Zheng, W. L. Schaich, and A. H. MacDonald, Phys. Rev. B 41, 8493 (1990).

    Article  ADS  Google Scholar 

  23. C. D. Ager, R. J. Wilkinson, and H. P. Hughes, J. Appl. Phys. 71, 1322 (1992).

    Article  ADS  Google Scholar 

  24. O. R. Matov, O. F. Meshkov, O. V. Polischuk, and V. V. Popov, Int. J. Infrared Millimeter Waves 14, 1455 (1993).

    Article  ADS  Google Scholar 

  25. R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Appl. Phys. 71, 6049 (1992).

    Article  ADS  Google Scholar 

  26. C. D. Ager and H. P. Hughes, Solid State Commun 83, 627 (1992).

    Article  ADS  Google Scholar 

  27. O. R. Matov, O. F. Meshkov, and V. V. Popov, Zh. Éksp. Teor. Fiz. 113, 988 (1998) [JETP 86, 538 (1998)].

    Google Scholar 

  28. O. R. Matov, O. V. Polishchuk, and V. V. Popov, Zh. Éksp. Teor. Fiz. 122, 586 (2002) [JETP 95, 505 (2002)].

    Google Scholar 

  29. V. V. Popov, O. V. Polischuk, T. V. Teperik, X. G. Peralta, S. J. Allen, N. J. M. Horing, and M. C. Wanke, J. Appl. Phys. 94, 3556 (2003).

    Article  ADS  Google Scholar 

  30. J. Fletcher, Computational Galerkin Methods (Springer, Berlin, Heidelberg, New York, Tokyo, 1984; Mir, Moscow, 1988).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Fateev.

Additional information

Original Russian Text © D.V. Fateev, V.V. Popov, M.S. Shur, 2010, published in Fizika i Tekhnika Poluprovodnikov, 2010, Vol. 44, No. 11, pp. 1455–1462.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fateev, D.V., Popov, V.V. & Shur, M.S. Transformation of the plasmon spectrum in a grating-gate transistor structure with spatially modulated two-dimensional electron channel. Semiconductors 44, 1406–1413 (2010). https://doi.org/10.1134/S1063782610110059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782610110059

Keywords

Navigation