Skip to main content
Log in

Stability of dust acoustic wavepackets suffering from polarization force due to the presence of trapped ions

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The combined effects of the polarization force, free and trapped ions, and dust charge variation are incorporated in a rigorous study of the nonlinear dust acoustic waves (DAWs) propagating in an unmagnetized dusty plasma. Owing to the departure from the Boltzmann ion distribution, it is found that the nonlinear DAWs are governed by a modified Korteweg−de Vries (mKdV) equation. The association between the mKdV solitary wave and the DAW envelope in the system under consideration is discussed. A modified nonlinear Schrödinger equation appropriate for describing the modulated DAWs is derived. The modulation instability (MI) and the dependence of the system physical parameters on the polarization force, trapped ions, and dust charge variation have been analyzed. It is found that the critical curve separating the stable/unstable regions is strongly influenced by both of the polarization and the ion trapping parameters. Moreover, increasing the polarization leads to an increase of the critical wave number, while increasing the trapping parameter yields the opposite effect. The MI maximum growth rate decreases (increases) as the polarization (trapped ion) increases. The obtained results may be helpful in better understanding of space observations of the solar energetic particle flows in interplanetary space and the energetic particle events in the Earth’s magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. N. Rao, P. K. Shukla, and M. Yu, Planet. Space Sci. 38, 543 (1990).

    Article  ADS  Google Scholar 

  2. M. Horànyi and D. A. Mendis, J. Geophys. Res. 91, 355 (1986).

    Article  ADS  Google Scholar 

  3. D. A. Mendis and M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 418 (1994).

    Article  ADS  Google Scholar 

  4. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).

    Book  Google Scholar 

  5. J. H. Chu and J. B. Du, J. Phys. D 27, 296 (1994).

    Article  ADS  Google Scholar 

  6. J. H. Chu and J. B. Du, Phys. Rev. Lett. 72, 4009 (1994).

    Article  ADS  Google Scholar 

  7. P. K. Shukla and V. P. Silin, Phys. Scr. 45, 508 (1992).

    Article  ADS  Google Scholar 

  8. F. Melandso, Phys. Plasmas 3, 3890 (1996).

    Article  ADS  Google Scholar 

  9. P. K. Kaw and A. Sen, Phys. Plasmas 5, 3552 (1998).

    Article  ADS  Google Scholar 

  10. N. N. Rao, Phys. Plasmas 6, 4414 (1999).

    Article  ADS  Google Scholar 

  11. W. F. El-Taibany and M. Wadati, Phys. Plasmas 14, 103703 (2007).

    Article  ADS  Google Scholar 

  12. Y. N. Nejoh, Phys. Plasmas 4, 2813 (1997).

    Article  ADS  Google Scholar 

  13. B. S. Xie, K. F. He, and Z. Q. Huang, Phys. Lett. A 247, 403 (1998).

    Article  ADS  Google Scholar 

  14. A. V. Ivlev and G. Morfill, Phy. Rev. E 63, 026412 (2001).

    Article  ADS  Google Scholar 

  15. S. I. Kopnin, I. N. Kosarev, S. I. Popel, and M. Y. Yu, Plasma Phys. Rep. 31, 198 (2005).

    Article  ADS  Google Scholar 

  16. P. K. Sakanaka, Phys. Fluids 15, 1323 (1972).

    Article  ADS  Google Scholar 

  17. J. E. Borovsky and G. Joyce, J. Plasma Phys. 29, 45 (1983).

    Article  ADS  Google Scholar 

  18. K. Saeki, P. Michelsen, H. P. Pecseli, and J. J. Rasmussen, Phys. Rev. Lett. 42, 501 (1979).

    Article  ADS  Google Scholar 

  19. H. Schamel, Phys. Rep. 140, 161 (1986).

    Article  ADS  Google Scholar 

  20. H. Schamel, Plasma Phys. 14, 905 (1972).

    Article  ADS  Google Scholar 

  21. Y. A. Shchekinov, Phys. Lett. A 225, 117 (1997).

    Article  ADS  Google Scholar 

  22. S. K. El-Labany and W. F. El-Taibany, Phys. Plasmas 12, 4685 (2003).

    Article  ADS  Google Scholar 

  23. O. Rahman, A. A. Mamun, and K. S. Ashrafi, Astrophys. Space Sci. 335, 425 (2011).

    Article  ADS  Google Scholar 

  24. H. Alinejad, Astrophys. Space Sci. 337, 223 (2012).

    Article  ADS  Google Scholar 

  25. S. K. El-Labany, W. F. El-Taibany, A. A. Mamun, and W. M. Moslem, Phys. Plasmas 11, 926 (2004).

    Article  ADS  Google Scholar 

  26. A. A. Mamun, B. Eliasson, and P. K. Shukla, Phys Lett. A 332, 412 (2004).

    Article  ADS  Google Scholar 

  27. H. Alinejad, Phys Lett. A 374, 1855 (2010).

    Article  ADS  Google Scholar 

  28. S. Younsi and M. Tribeche, Phys. Lett. A 372, 5181 (2008).

    Article  ADS  Google Scholar 

  29. S. V. Vladimirov, V. N. Tsytovich, S. I. Popel, and F. Kh. Khakimov, Modulational Interactions in Plasmas (Kluwer Academic, Dordrecht, 1995).

    Book  Google Scholar 

  30. A. K. Gailitis, Ph.D. Thesis (Lebedev Physical Institute, USSR Acad. Sci., Moscow, 1964).

    Google Scholar 

  31. A. A. Vedenov and L. I. Rudakov, Sov. Phys. Doklady 9, 1073 (1965).

    ADS  Google Scholar 

  32. Y. Nejoh, IEEE Trans. Plasma Sci. 2, 80 (1992).

    Article  ADS  Google Scholar 

  33. S. V. Vladimirov and S. I. Popel, Aust. J. Phys. 47, 375 (1994).

    Article  ADS  Google Scholar 

  34. S. I. Popel, V. N. Tsytovich, and S. V. Vladimirov, Phys. Plasmas 1, 2176 (1994).

    Article  ADS  Google Scholar 

  35. S. I. Popel, Plasma Phys. Rep. 24, 1022 (1998).

    ADS  Google Scholar 

  36. G. C. Das, J. Sarma, and M. Talukdar, Phys. Plasmas 5, 63 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  37. G. C. Das and J. Sarma, Phys. Plasmas 5, 3918 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  38. S. Hamaguchi and R. T. Farouki, Phys. Rev. E 49, 4430 (1994).

    Article  ADS  Google Scholar 

  39. S. A. Khrapak, A. V. IvIev, V. V. Yaroshenko, and G. E. Morfill, Phys. Rev. Lett. 102, 245004 (2009).

    Article  ADS  Google Scholar 

  40. S. K. El-Labany, W. F. El-Taibany, E. F. El-Shamy, A. El-Depsy, and N. A. Zedan, Phys. Plasmas 19, 103708 (2012).

    Article  ADS  Google Scholar 

  41. S. K. El-Labany, E. F. El-Shamy, W. F. El-Taibany, and N. A. Zedan, Chin. Phys. B 24, 035201 (2015).

    Article  ADS  Google Scholar 

  42. H. Schamel, J. Plasma Phys. 9, 377 (1973).

    Article  ADS  Google Scholar 

  43. E. C. Whipple, Rep. Prog. Phys. 44, 1198 (1981).

    Article  ADS  Google Scholar 

  44. M. S. Barnes, J. H. Keller, J. C. Forster, J. A. O’Neill, and D. K. Coultas, Phys. Rev. Lett. 68, 313 (1992).

    Article  ADS  Google Scholar 

  45. W. F. El-Taibany, I. Kourakis, and M. Wadati, Plasma Phys. Controlled Fusion 50, 074003 (2008).

    Article  ADS  Google Scholar 

  46. S. I. Popel, Plasma Phys. Rep. 27, 448 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. El-Labany.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Labany, S.K., El-Taibany, W.F., El-Bedwehy, N.A. et al. Stability of dust acoustic wavepackets suffering from polarization force due to the presence of trapped ions. Plasma Phys. Rep. 43, 756–763 (2017). https://doi.org/10.1134/S1063780X17070042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17070042

Navigation