Skip to main content
Log in

On the reason for the kink in the rigidity spectra of cosmic-ray protons and helium nuclei near 230 GV

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A three-component phenomenological model describing the specific features of the spectrum of cosmic-ray protons and helium nuclei in the rigidity range of 30–2×105 GV is proposed. The first component corresponds to the constant background; the second, to the variable “soft” (30–500 GV) heliospheric source; and the third, to the variable “hard” (0.5–200 TV) source located inside a local bubble. The existence and variability of both sources are provided by the corresponding “surfatron accelerators,” whose operation requires the presence of an extended region with an almost uniform (in both magnitude and direction) magnetic field, orthogonally (or obliquely) to which electromagnetic waves propagate. The maximum energy to which cosmic rays can be accelerated is determined by the source size. The soft source with a size of ∼100 AU is located at the periphery of the heliosphere, behind the front of the solar wind shock wave. The hard source with a size of >0.1 pc is located near the boundary of an interstellar cloud at a distance of ∼0.01 pc from the Sun. The presence of a kink in the rigidity spectra of p and He near 230 GV is related to the variability of the physical conditions in the acceleration region and depends on the relation between the amplitudes and power-law exponents in the dependences of the background, soft heliospheric source, and hard near galactic source. The ultrarelativistic acceleration of p and He by an electromagnetic wave propagating in space plasma across the external magnetic field is numerically analyzed. Conditions for particle trapping by the wave and the dynamics of the particle velocity and momentum components are considered. The calculations show that, in contrast to electrons and positrons (e +), the trapped protons relatively rapidly escape from the effective potential well and cease to accelerate. Due to this effect, the p and He spectra are softer than that of e +. The possibility that the spectra of accelerated protons deviate from standard power-law dependences due to the surfatron mechanism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, E. A. Bogomolov, L. Bonechi, M. Bongi, V. Bonvicini, S. Borisov, S. Bottai, A. Bruno, F. Cafagna, D. Campana, R. Carbone, et al., Science 332, 69 (2011).

    Article  ADS  Google Scholar 

  2. A. D. Panov, J. H. Adams, H. S. Ahn, G. L. Bashinzhagyan, J. W. Watts, J. P. Wefel, J. Wu, O. Ganel, T.G. Guzik, V. I. Zatsepin, I. Isbert, K. C. Kim, M. Christl, E. N. Kouznetsov, M. I. Panasyuk, et al., Bull. Russian Acad. Sci., Physics 73, 564 (2009).

    Article  ADS  Google Scholar 

  3. S. Haino, T. Sanuki, K. Abe, K. Anraku, Y. Asaoka, H. Fuke, M. Imori, A. Itasaki, T. Maeno, Y. Makida, S. Matsuda, N. Matsui, H. Matsumoto, J. W. Mitchell, A. A. Moiseev, et al., Phys. Lett. B 594, 35 (2004).

    Article  ADS  Google Scholar 

  4. H. S. Ahn, P. Allison, M. G. Bagliesi, J. J. Beatty, G. Bigongiari, J. T. Childers, N. B. Conklin, S. Coutu, M. A. Du Vernois, O. Ganel, J. H. Han, J. A. Jeon, K. C. Kim, M. H. Lee, L. Lutz, et al., Astrophys. J. Lett. 714, 89 (2010).

    Article  ADS  Google Scholar 

  5. Y. S. Yoon, H. S. Ahn, P. S. Allison, M. G. Bagliesi, J. J. Beatty, G. Bigongiari, P. J. Boyle, J. T. Childers, N. B. Conklin, S. Coutu, M. A. Du Vernois, O. Ganel, J. H. Han, J. A. Jeon, K. C. Kim, et al., Astrophys. J. 728, 122 (2011).

    Article  ADS  Google Scholar 

  6. V. A. Derbina, V. I. Galkin, M. Hareyama, Y. Hirakawa, Y. Horiuchi, M. Ichimura, N. Inoue, E. Kamioka, T. Kobayashi, V. V. Kopenkin, S. Kuramata, A. K. Managadze, H. Matsutani, N. P. Misnikova, R. A. Mukhamedshin, et al., Astrophys. J. Lett. 628, 41 (2005).

    Article  ADS  Google Scholar 

  7. P. L. Biermann, J. K. Becker, J. Dreyer, A. Meli, E.-S. Seo, and T. Stanev, Astrophys. J. 725, 184 (2010).

    Article  ADS  Google Scholar 

  8. Y. Ohira and K. Ioka, Astrophys. J. Lett. 729, 13 (2011).

    Article  ADS  Google Scholar 

  9. M. Kafatos, F. Bruhweiler, and S. Sofia, in Proceedings of the 17th International Cosmic Ray Conference, Paris, 1981, Vol. 2, p. 22.

    Google Scholar 

  10. M. A. Malkov, P. H. Diamond, and R. Z. Sagdeev, Phys. Rev. Lett. 108, 081104 (2012).

    Article  ADS  Google Scholar 

  11. V. I. Zatsepin and N. V. Sokolskaya, Astron. Astrophys. 458, 1 (2006).

    Article  ADS  Google Scholar 

  12. T. Katsouleas and J. M. Dawson, Phys. Rev. Lett. 51, 392 (1983).

    Article  ADS  Google Scholar 

  13. N. S. Erokhin, S. S. Moiseev, and R. Z. Sagdeev, Sov. Astron. Lett. 15, 1 (1989).

    ADS  Google Scholar 

  14. G. N. Kichigin, JETP 92, 895 (2001).

    Article  ADS  Google Scholar 

  15. V. M. Loznikov and N. S. Erokhin, Vopr. At. Nauki Tekh., Ser. Plazm. Elektron. Novye Metody Uskor., No. 4, 121 (2010).

    Google Scholar 

  16. V. M. Loznikov, N. S. Erokhin, and L. A. Mikhailovskaya, Kosm. Issl. 51 (3), 191 (2013).

    Google Scholar 

  17. V. M. Loznikov, N. S. Erokhin, and L. A. Mikhailovskaya, Plasma Phys. Rep. 39, 829 (2013).

    Article  ADS  Google Scholar 

  18. G. N. Kichigin, JETP Lett. 87, 343 (2008).

    Article  ADS  Google Scholar 

  19. K. V. Ptitsyna and S. V. Troitskii, Phys. Usp. 53, 691 (2010).

    Article  ADS  Google Scholar 

  20. V. B. Baranov, M. G. Lebedev, and V. S. Ruderman, Astrophys. Space Sci. 66, 441 (1979).

    Article  ADS  Google Scholar 

  21. S. Grzedzielski, M. Bzowski, A. Czechowski, H. O. Funsten, D. J. McComas, and N. A. Schwadron, Astrophys. J. 715, 84 (2010).

    Article  ADS  Google Scholar 

  22. D. A. Gurnett and W. S. Kurth, Nature 454, 78 (2008).

    Article  ADS  Google Scholar 

  23. D. A. Gurnett, W. S. Kurth, L. F. Burlaga, and N. F. Ness, Science 341, 1489 (2013).

    Article  ADS  Google Scholar 

  24. S. A. Fuselier and I. H. Cairns, Astrophys. J. 771, 83 (2013).

    Article  ADS  Google Scholar 

  25. I. H. Cairns, in The Sun, the Solar Wind, and the Heliosphere (IAGA Special Sopron Book Series, Vol. 4), Ed. by M. P. Miralles and J. Sánchez Almeida (Springer, Berlin, 2011), p. 267.

  26. A. D. Erlykin and A. W. Wolfendale, Astroparticle Phys. 35, 449 (2012).

    Article  ADS  Google Scholar 

  27. P. Mertsch and S. Sarkar, http://xxx.lanl.gov/pdf/1402.0855v2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Loznikov.

Additional information

Original Russian Text © V.M. Loznikov, N.S. Erokhin, N.N. Zol’nikova, L.A. Mikhailovskaya, 2016, published in Fizika Plazmy, 2016, Vol. 42, No. 7, pp. 649–657.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loznikov, V.M., Erokhin, N.S., Zol’nikova, N.N. et al. On the reason for the kink in the rigidity spectra of cosmic-ray protons and helium nuclei near 230 GV. Plasma Phys. Rep. 42, 658–665 (2016). https://doi.org/10.1134/S1063780X16070072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16070072

Navigation