Skip to main content
Log in

On the feasibility of increasing the energy of laser-accelerated protons by using low-density targets

  • Laser Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Optimal regimes of proton acceleration in the interaction of short high-power laser pulses with thin foils and low-density targets are determined by means of 3D numerical simulation. It is demonstrated that the maximum proton energy can be increased by using low-density targets in which ions from the front surface of the target are accelerated most efficiently. It is shown using a particular example that, for the same laser pulse, the energy of protons accelerated from a low-density target can be increased by one-third as compared to a solid-state target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Daido, M. Nishiuchi, and A. S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012).

    Article  ADS  Google Scholar 

  2. A. Macchi, M. Borghesi, and M. Passoni, Rev. Mod. Phys. 85, 751 (2013).

    Article  ADS  Google Scholar 

  3. S. A. Gaillard, T. Kluge, K. A. Flippo, M. Bussmann, B. Gall, T. Lockard, M. Geissel, D. T. Offermann, M. Schollmeier, Y. Sentoku, and T. E. Cowan, Phys. Plasmas 18, 056710 (2011).

    Article  ADS  Google Scholar 

  4. T. Esirkepov, M. Yamagiwa, and T. Tajima, Phys. Rev. Lett. 96, 105001 (2006).

    Article  ADS  Google Scholar 

  5. S. S. Bulanov, C. B. Schroeder, E. Esarey, and W. P. Leemans, Phys. Plasmas 19, 093112 (2012).

    Article  ADS  Google Scholar 

  6. E. d’Humieres, A. V. Brantov, V. Yu. Bychenkov, and V. Tickhonchuk, Phys. Plasmas 20, 023103 (2013).

    Article  ADS  Google Scholar 

  7. V. Yu. Bychenkov, A. V. Brantov, and G. Mourou, Laser Part. Beams 32, 605 (2014).

    Article  ADS  Google Scholar 

  8. A. V. Brantov, E. A. Govras, V. Yu. Bychenkov, and W. Rozmus, Phys. Rev. STAPB 18, 021301 (2015).

    ADS  Google Scholar 

  9. A. V. Brantov, V. Yu. Bychenkov, and V. Rozmus, Quant. Electron. 37, 863 (2007).

    Article  ADS  Google Scholar 

  10. S. S. Bulanov, A. Brantov, V. Yu. Bychenkov, V. Chvykov, G. Kalinchenko, T. Matsuoka, P. Rousseau, S. Reed, V. Yanovsky, K. Krushelnick, D. W. Litzenberg, and A. Maksimchuk, Med. Phys. 35, 1770 (2008).

    Article  Google Scholar 

  11. T. Nakamura, S. V. Bulanov, T. Zh. Esirkepov, and M. Kando, Phys. Rev. Lett. 105, 135002 (2010).

    Article  ADS  Google Scholar 

  12. K. I. Popov, W. Rozmus, V. Yu. Bychenkov, N. Naseri, C. E. Capjack, and A. V. Brantov, Phys. Rev. Lett. 105, 195002 (2010).

    Article  ADS  Google Scholar 

  13. S. S. Bulanov, V. Yu. Bychenkov, V. Chvykov, G. Kalinchenko, D. W. Litzenberg, T. Matsuoka, A. G. R. Thomas, L. Willingale, V. Yanovsky, K. Krushelnick, and A. Maksimchuk, Phys. Plasmas 17, 043105 (2010).

    Article  ADS  Google Scholar 

  14. S. V. Bulanov, D. V. Dylov, T. Zh. Esirkepov, E. E. Kamenets, and D. V. Sokolov, Plasma Phys. Rep. 31, 369 (2005).

    Article  ADS  Google Scholar 

  15. A. V. Brantov, V. Yu. Bychenkov, K. I. Popov, R. Fedosejevs, W. Rozmus, and T. Schlegel, Nucl. Instr. Meth. Phys. Res. A 653, 62 (2011).

    Article  ADS  Google Scholar 

  16. M. Passoni, A. Zani, A. Sgattoni, D. Dellasega, A. Macchi, I. Prencipe, V. Floquet, P. Martin, T. V. Liseykina, and T. Ceccotti, Plasma Phys. Controlled Fusion 56, 045001 (2014).

    Article  ADS  Google Scholar 

  17. A. V. Korzhimanov, A. A. Gonoskov, A. V. Kim, and A. M. Sergeev, JETP Lett. 86, 577 (2007).

    Article  ADS  Google Scholar 

  18. E. d’Humieres, P. Antici, M. Glesser, J. Boeker, F. Cardelli, S. Chen, J. L. Feugeas, F. Filippi, M. Gauthier, A. Levy, P. Nicolae, H. Pepin, L. Romagnani, M. Sciscio, V. T. Tikhonchuk, O. Willi, J. C. Kieffer, and J. Fuchs, Plasma Phys. Controlled Fusion 55, 124025 (2013).

    Article  ADS  Google Scholar 

  19. J. Psikal, O. Klimo, S. Weber, and D. Margarone, Phys. Plasmas 21, 073108 (2014).

    Article  ADS  Google Scholar 

  20. K. Matsukado, T. Esirkepov, K. Kinoshita, H. Daido, T. Utsumi, Z. Li, A. Fukumi, Y. Hayashi, S. Orimo, M. Nishiuchi, S. V. Bulanov, T. Tajima, A. Noda, Y. Iwashita, T. Shirai, T. Takeuchi, S. Nakamura, A. Yamazaki, M. Ikegami, T. Mihara, A. Morita, M. Uesaka, K. Yoshii, T. Watanabe, T. Hosokai, A. Zhidkov, A. Ogata, Y. Wada, and T. Kubota, Phys. Rev. Lett. 91, 215001 (2003).

    Article  ADS  Google Scholar 

  21. D. Jung, B. J. Albright, L. Yin, D. C. Gautier, R. Shah, S. Palaniyappan, S. Letzring, B. Dromey, H.-C. Wu, T. Shimada, R. P. Johnson, M. Roth, J. C. Fernandez, D. Habs, and B. M. Hegelich, New J. Phys. 15, 023007 (2013).

    Article  ADS  Google Scholar 

  22. A. V. Brantov and V. Yu. Bychenkov, Contrib. Plasma Phys. 53, 731 (2013).

    Article  ADS  Google Scholar 

  23. A. Macchi, A. Sgattoni, S. Sinigardi, M. Borghesi, and M. Passoni, Plasma Phys. Controlled Fusion 55, 124020 (2013).

    Article  ADS  Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  25. D. V. Romanov, V. Yu. Bychenkov, W. Rozmus, C. E. Capjack, and R. Fedosejevs, Phys. Rev. Lett. 93, 215004 (2004).

    Article  ADS  Google Scholar 

  26. S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, Phys. Plasmas 8, 542 (2001).

    Article  ADS  Google Scholar 

  27. H. B. Zhuo, Z. L. Chen, W. Yu, Z. M. Sheng, M. Y. Yu, Z. Jin, and R. Kodama, Phys. Rev. Lett. 105, 065003 (2010).

    Article  ADS  Google Scholar 

  28. A. V. Kuznetsov, T. Zh. Esirkepov, E. E. Kamenets, and S. V. Bulanov, Plasma Phys. Rep. 27, 211 (2001).

    Article  ADS  Google Scholar 

  29. V. Yu. Bychenkov, V. T. Tikhonchuk, and S. V. Tolokonnikov, JETP 88, 1137 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Brantov.

Additional information

Original Russian Text © A.V. Brantov, V.Yu. Bychenkov, 2015, published in Fizika Plazmy, 2015, Vol. 41, No. 6, pp. 542–547.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brantov, A.V., Bychenkov, V.Y. On the feasibility of increasing the energy of laser-accelerated protons by using low-density targets. Plasma Phys. Rep. 41, 501–506 (2015). https://doi.org/10.1134/S1063780X1506001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1506001X

Keywords

Navigation