Skip to main content
Log in

Influence of plasma parameters on the absorption coefficient of alpha particles to lower hybrid waves in tokamaks

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

In tokamaks, fusion generated α particles may absorb lower hybrid (LH) wave energy, thus reducing the LH current drive efficiency. The absorption coefficient γα of LH waves due to α particles changing with some typical parameters is calculated in this paper. Results show that γα increases with the parallel refraction index n , while decreases with the frequency of LH waves ω over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption. The absorption coefficient γα increases with n e when n e ≤ 8 × 1019 m−3, while decreases with n e when n e becomes larger, and there is a peak value of γα when n e ≈ 8 × 1019 m−1 for the ITER-like scenario. The influence of spectral broadening in parametric decay instabilities on the absorption coefficient is evaluated. The value of γα with n being 2.5 is almost two times larger than that with n being 2.0 and is even lager in the case of 2.9, which will obviously increase the absorption of the LH power by alpha particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Pavlo, L. Krlín, and Z. Tlučhoř, Nucl. Fusion 31, 711 (1991).

    Article  Google Scholar 

  2. M. Spada, M. Bornatici, and F. Engelmann, Nucl. Fusion 31, 447 (1991).

    Article  Google Scholar 

  3. N. J. Fisch, Rev. Mod. Phys. 59, 175 (1987).

    Article  ADS  Google Scholar 

  4. V. L. Granatstein and P. L. Colestock, Wave Heating and Current Drive in Plasmas (Gordon & Breach, New York, 1985).

    Google Scholar 

  5. M. Schneider, L.-G. Eriksson, F. Imbeaux, and J. F. Artaud, Nucl. Fusion 49, 125005 (2009).

    Article  ADS  Google Scholar 

  6. M. Schneider, L.-G. Eriksson, V. Basiuk, and F. Imbeaux, in Proceedings of the 33rd EPS Conference on Plasma Physics, Roma, 2006, ECA 30I, P-1.118 (2006).

    Google Scholar 

  7. L.-G. Eriksson and M. Schneider, Phys. Plasmas 12, 072524 (2005).

    Article  ADS  Google Scholar 

  8. C. Gormezano and W. Hess, Nucl. Fusion 21, 1047 (1981).

    Article  Google Scholar 

  9. M. Brambilla and Y.-P. Chen, Nucl. Fusion 23, 541 (1983).

    Article  Google Scholar 

  10. C. F. F. Karney, Phys. Fluids 21, 1584 (1978).

    Article  ADS  MATH  Google Scholar 

  11. C. F. F. Karney, Phys. Fluids. 22, 2188 (1979).

    Article  ADS  MATH  Google Scholar 

  12. T. Stix, The Theory of Plasma Waves (Wiley, New York, 1962).

    MATH  Google Scholar 

  13. M. Brambilla, Kinetic Theory of Plasma Waves (Clarendon, Oxford, 1998).

    Google Scholar 

  14. K. M. Wong and M. Ono, Nucl. Fusion 24, 615 (1984).

    Article  Google Scholar 

  15. E. Barbato and F. Santini, Nucl. Fusion 31, 673 (1991).

    Article  Google Scholar 

  16. N. J. Fisch and J.-M. Rax, Nucl. Fusion 32, 549 (1992).

    Article  ADS  Google Scholar 

  17. A. Heikkinen and S. K. Sipilä, Nucl. Fusion 36, 1345 (1996).

    Article  ADS  Google Scholar 

  18. D. Testa, C. N. Lashmore-Davies, A. Gondhalekar, L.-G. Eriksson, M. Mantsinen, and T. J. Martin, Plasma Phys. Controlled Fusion 41, 507 (1999).

    Article  ADS  Google Scholar 

  19. M. C. Ramos de Andrade, M. Brusati, Y. Baranov, L. G. Eriksson, C. Gormezano, E. Righi, F. Rimini, and G. Sadler, Plasma Phys. Controlled Fusion 36, 1171 (1994).

    Article  ADS  Google Scholar 

  20. E. Barbato and A. Saveliev, Plasma Phys. Controlled Fusion 46, 1283 (2004).

    Article  ADS  Google Scholar 

  21. R. Cesario, A. Cardinali, C. Castaldo, F. Paoletti, W. Fundamenski, S. Hacquin, and the JET-EFDA workprogramme contributors, Nucl. Fusion 46, 462 (2006).

    Article  ADS  Google Scholar 

  22. F. Imbeaux and Y. Peysson, Plasma Phys. Controlled Fusion 47, 2041 (2005).

    Article  ADS  Google Scholar 

  23. P. Bonoli and R. Englade, Phys. Fluids 29, 2937 (1986).

    Article  ADS  MATH  Google Scholar 

  24. V. N. Oraevsky, in Handbook of Plasma Physics, Ed. by M. N. Rosenbluth and R. Z. Sagdeev (North-Holland, Amsterdam, 1983), Vol. 1, p. 75.

  25. M. Brambilla and A. Cardinali, IEEE Trans. Plasma Sci. 24, 1187 (1982).

    MathSciNet  Google Scholar 

  26. D. G. Swanson, Plasma Waves (Academic, Boston, MA, 1989).

    Book  Google Scholar 

  27. D. Anderson, H. Hamnen, and M. Lisak, Phys. Fluids 25, 353 (1982).

    Article  ADS  MATH  Google Scholar 

  28. R. Cesario, A. Cardinali, C. Castaldo, F. Paoletti, and D. Mazon, Phys. Rev. Lett. 92, 175002 (2004).

    Article  ADS  Google Scholar 

  29. Y. Takase and M. Porkoklab, Phys. Fluids 26, 2992 (1983).

    Article  ADS  MATH  Google Scholar 

  30. V. Pericoli-Ridolfini, A. Ekedahl, Y. Baranov, J.A. Dobbing, B. Fischer, C. Gormezano, M. Lennholm, F. Rimini, J. Romero, P. Schild, and F. X. Söldner, Plasma Phys. Controlled Fusion 39, 1115 (1997).

    Article  ADS  Google Scholar 

  31. P. T. Bonoli, and M. Porkolab, Nucl. Fusion 27, 1341 (1987).

    Article  Google Scholar 

  32. V. Pericoli Ridolfini, M. L. Apicella, G. Calabro, C. Cianfarani, E. Giovannozzi, and L. Panaccione, Nucl. Fusion 51, 113023 (2011).

    Article  ADS  Google Scholar 

  33. M. Goniche, L. Amicucci, Y. Baranov, V. Basiuk, G. Calabro, A. Cardinali, C. Castaldo, R. Cesario, J. Decker, D. Dodt, A. Ekedahl, L. Figini, J. Garcia, G. Giruzzi, J. Hillairet, G. T. Hoang, A. Hubbard, E. Joffrin, K. Kirov, X. Litaudon, J. Mailloux, T. Oosako, R. Parker, V. Pericoli Ridolfini, Y. Peysson, P. Platania, F. Rimini, P. K Sharma, C. Sozzi, and G. Wallace, Plasma Phys. Controlled Fusion 52, 124031 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Zhang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, X., Yu, L. et al. Influence of plasma parameters on the absorption coefficient of alpha particles to lower hybrid waves in tokamaks. Plasma Phys. Rep. 40, 932–938 (2014). https://doi.org/10.1134/S1063780X14100080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X14100080

Keywords

Navigation