Skip to main content
Log in

Effect of the longitudinal momentum of electrons on their surfatron acceleration by an electromagnetic wave in space plasma

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

By numerically calculating the second-order nonlinear time-dependent equation for the wave phase on a particle trajectory, the effect of the longitudinal (with respect to the external magnetic field) momentum of electrons on the dynamics of their surfatron acceleration by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed. It is shown that, for strongly relativistic initial values of the longitudinal component of the electron momentum (the other parameters of the problem being fixed), the electrons are trapped into the ultrarelativistic regime of surfatron acceleration within a definite interval of the initial wave phase Ψ(0) on the particle trajectory. It was assumed in the calculations that Ψ(0) ≤ π. For the initial wave phases lying within the interval of 0 < Ψ(0) ≤ π, the electrons are immediately trapped by the wave, whereas at π ≤ Ψ(0) ≤ 0, no electron trapping is observed even at long computation times. This result substantially simplifies estimates of the wave damping caused by particle acceleration. The dynamics of the velocity components, momentum, and relativistic factor of electrons in the course of their ultrarelativistic acceleration are considered. The obtained results present interest for the development of modern concepts of the mechanisms for the generation of ultrarelativistic particles in space plasma, correct interpretation of experimental data on the flows of such particles, explanation of possible reasons for the deviation of the fast particle spectra observed in the heliosphere from the standard power-law scaling, and analysis of the relation between such deviations and the space weather.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Katsouleas and J. M. Dawson, Phys. Rev. Lett. 51, 392 (1983).

    Article  ADS  Google Scholar 

  2. C. Joshi, in Radiation in Plasmas (Reviews from 1983 College on Plasma Physics, Trieste, 1983), Ed. by. B. McNamara, (World Scientific, Singapore, 1984), Vol. 1, p. 514.

  3. B. E. Gribov, R. Z. Sagdeev, V. D. Shapiro, and V. I. Shevchenko, JETP Lett. 42, 63 (1985).

    ADS  Google Scholar 

  4. S. V. Bulanov and A. S. Sakharov, Plasma Phys. Rep. 26, 1005 (2000).

    Article  ADS  Google Scholar 

  5. N. S. Erokhin, A. A. Lazarev, S. S. Moiseev, and R. Z. Sagdeev, Sov. Phys. Dokl. 32, 656 (1987).

    ADS  Google Scholar 

  6. M. I. Sitnov, Sov. Tech. Phys. Lett. 14, 40 (1988).

    ADS  Google Scholar 

  7. N. S. Erokhin, S. S. Moiseev, and R. Z. Sagdeev, Sov. Astron. Lett. 15, 1 (1989).

    ADS  Google Scholar 

  8. G. N. Kichigin, JETP 92, 89 (2001).

    Article  Google Scholar 

  9. A. I. Neishtadt, A. V. Artem’ev, L. M. Zelenyi, and D. L. Vainshtein, JETP Lett. 89, 441 (2009).

    Article  ADS  Google Scholar 

  10. V. M. Loznikov and N. S. Erokhin, Vopr. At. Nauki Tekh., Ser. Plazm. Elektron., No. 4, 121 (2010).

    Google Scholar 

  11. N. S. Erokhin, N. N. Zol’nikova, E. A. Kuznetsov, and L. A. Mikhailovskaya, Vopr. At. Nauki Tekh., Ser. Plazm. Elektron., No. 4, 116 (2010).

    Google Scholar 

  12. A. I. Neishtadt, A. V. Artemyev, and L. M. Zelenyi, Regul. Chaotic Dyn. 15, 564 (2010).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. V. M. Loznikov, N. S. Erokhin, N. N. Zol’nikova, and L. A. Mikhailovskaya, Plasma Phys. Rep. 39, 829 (2013).

    Article  ADS  Google Scholar 

  14. R. Shkevov, N. S. Erokhin, L. A. Mikhailovskaya, and N. N. Zolnikova, J. Atmos. Sol.-Terr. Phys. 99, 73 (2012).

    Article  ADS  Google Scholar 

  15. A. N. Erokhin, N. S. Erokhin, and V. P. Milant’ev, Plasma Phys. Rep. 38, 396 (2012).

    Article  ADS  Google Scholar 

  16. A. I. Neishtadt, B. A. Petrovichev, and A. A. Chernikov, Sov. J. Plasma Phys. 15, 593 (1989).

    Google Scholar 

  17. G. M. Zaslavskii, A. I. Neishtadt, B. A. Petrovichev, and R. Z. Sagdeev, Sov. J. Plasma Phys. 15, 368 (1989).

    Google Scholar 

  18. E. G. Berezhko and G. F. Krymskii, Sov. Phys. Usp. 31, 27 (1988).

    Article  ADS  Google Scholar 

  19. V. S. Ptuskin, Phys. Usp. 50, 534 (2007).

    Article  ADS  Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Erokhin.

Additional information

Original Russian Text SC A.N. Erokhin, N.N. Zol’nikova, N.S. Erokhin, 2014, published in Fizika Plazmy, 2014, Vol. 40, No. 10, pp. 920–927.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erokhin, A.N., Zol’nikova, N.N. & Erokhin, N.S. Effect of the longitudinal momentum of electrons on their surfatron acceleration by an electromagnetic wave in space plasma. Plasma Phys. Rep. 40, 812–819 (2014). https://doi.org/10.1134/S1063780X14090025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X14090025

Keywords

Navigation