Skip to main content
Log in

Mathematical modeling of gas-dynamic and radiative processes in experiments with the use of laser and heavy-ion beams

  • Plasma Emission
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from theoretical and experimental studies of gas-dynamic and radiative processes in the plasma that is planned to be used in future experiments on the stopping of fast heavy-ion beams. These experiments are aimed at measuring the enhanced (as compared to cold substance) plasma stopping power. To reliably interpret the experimental results, it is necessary to create a hydrodynamically stable homogeneous plasma with a uniform temperature and a lifetime exceeding the transit time of the heavy-ion beam (3–5 ns). The method for calculating plasma gas-dynamic characteristics with allowance for radiative heat transfer is described. The specific features of the so-called ion model of plasma, which is used to calculate plasma radiative characteristics, are discussed. The emission spectrum formed as a result of conversion of laser radiation into X-rays and the subsequent passing through a triacetate cellulose (C12H16O8) target is calculated. The simulated spectrum of transmitted radiation satisfactorily agrees with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Batani, R. Dtzulian, R. Redaelli, et al., Laser Part. Beams 25, 127 (2007).

    Article  ADS  Google Scholar 

  2. A. Bret and C. Deutsch, Laser Part. Beams 24, 269 (2006).

    ADS  Google Scholar 

  3. T. Someya, K. Miyazawa, T. Kikuchi, and S. Kawata, Laser Part. Beams 24, 359 (2006).

    Article  Google Scholar 

  4. O. B. Denisov, N. Yu. Orlov, S. Yu. Gus’kov, et al., Plasma Phys. Rep. 31, 684 (2005).

    Article  ADS  Google Scholar 

  5. Ya. B. Zel’dovich and Yu. P. Raizer, Elements of Gas Dynamics and the Classical Theory of Shock Waves (Nauka, Moscow, 1966; Academic, New York, 1968).

    Google Scholar 

  6. P. Adamek, O. Renner, L. Drska, et al., Laser Part. Beams 24, 511 (2006).

    Article  Google Scholar 

  7. D. H. H. Hofmann, K. Weyrich, H. Wahl, et al., Phys. Rev. A 42, 2313 (1990).

    Article  ADS  Google Scholar 

  8. D. H. H. Hoffmann, A. Blazevic, P. Ni, et al., Laser Part. Beams 23, 47 (2005).

    ADS  Google Scholar 

  9. A. M. Khalenkov, N. G. Borisenko, V. N. Kondrashov, et al., Laser Part. Beams 24, 283 (2006).

    Article  ADS  Google Scholar 

  10. O. N. Rosmej, N. Zhidkov, V. Vatulin, et al., in GSI Scientific Report 2009, Ed. by K. Grosse (GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, 2010), p. 387.

  11. G. Vergunova, J. Russ. Laser Res. 31, 504 (2010).

    Article  Google Scholar 

  12. N. Yu. Orlov, O. B. Denisov, O. N. Rosmej, et al., Laser Part. Beams 29, 69 (2011).

    Article  ADS  Google Scholar 

  13. O. N. Rosmej, V. Bagnout, U. Eisenbarth, et al., Nucl. Instrum. Methods A 653, 52 (2011).

    Article  ADS  Google Scholar 

  14. O. B. Denisov and N. Yu. Orlov, Plasma Phys. Rep. 37, 785 (2011).

    Article  ADS  Google Scholar 

  15. R. Feynman, N. Metropolis, and E. Teller, Phys. Rev. 75, 73 (1949).

    Article  Google Scholar 

  16. B. F. Rozsnyai, Phys. Rev. A 5, 1137 (1972).

    Article  ADS  Google Scholar 

  17. A. F. Nikiforov and V. B. Uvarov, Chisl. Metody Mekh. Sploshn. Sred 4(4), 114 (1973).

    Google Scholar 

  18. B. F. Rozsnyai, J. Quant. Spectrosc. Radiat. Transfer 27, 211 (1982).

    Article  ADS  Google Scholar 

  19. N. Yu. Orlov, Laser Part. Beams 15, 627 (1997).

    Article  ADS  Google Scholar 

  20. N. Yu. Orlov, Zh. Vychisl. Mat. Mat. Fiz. 27, 1058 (1987).

    MATH  Google Scholar 

  21. N. Yu. Orlov and V. E. Fortov, Plasma Phys. Rep. 27, 44 (2001).

    Article  ADS  Google Scholar 

  22. T. A. Shelkovenko, S. A. Pikuz, R. D. McBride, et al., Plasma Phys. Rep. 36, 50 (2010).

    Article  ADS  Google Scholar 

  23. N. Yu. Orlov, S. Yu. Guskov, S. A. Pikuz, et al., Laser Part. Beams 25, 1 (2007).

    Article  Google Scholar 

  24. O. B. Denisov and N. Yu. Orlov, Mat. Model. 23(2), 53 (2011).

    MATH  Google Scholar 

  25. B. N. Chetverushkin, Mathematical Modeling of Radiating Gas Dynanics (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  26. T. K. Govorun, G. A. Evseev, and T. V. Mishchenko, Preprint No. 176 (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 1986).

  27. V. Ya. Gol’din, Zh. Vychisl. Mat. Mat. Fiz. 4, 1078 (1964).

    MathSciNet  Google Scholar 

  28. A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of High-Temperature Plasma (Fizmatlit, Moscow, 2000) [in Russian].

    Google Scholar 

  29. E. Ivanov, V. Rozanov, and G. Vergunova, Proc. SPIE 4424, 308 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Vergunova.

Additional information

Original Russian Text © G.A. Vergunova, V.B. Rozanov, O.B. Denisov, N.Yu. Orlov, O.N. Rosmej, 2013, published in Fizika Plazmy, 2013, Vol. 39, No. 9, pp. 848–856.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vergunova, G.A., Rozanov, V.B., Denisov, O.B. et al. Mathematical modeling of gas-dynamic and radiative processes in experiments with the use of laser and heavy-ion beams. Plasma Phys. Rep. 39, 755–762 (2013). https://doi.org/10.1134/S1063780X13090080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X13090080

Keywords

Navigation