Skip to main content
Log in

Charge and potential of a dust grain versus the intergrain distance and establishment of the latter in a low-pressure plasma

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results from experimental studies of ordered dust structures in plasma are reviewed. The experimental conditions and the data on the grain size and intergrain distance in plasma dust crystals are analyzed. It is shown that intergrain distance is a function of the grain size. The range of the ratio of the dust grain size to the Debye radius within which plasma dust crystals can form is determined. A volume cell surrounding a dust grain in plasma is considered. It is found that the potential and charge of the grain depend substantially on the intergrain distance. The charge, potential, and potential energy of a dust grain in a plasma dust crystal, as well as the electrostatic force exerted by the plasma field on the grain, are calculated by the method of molecular dynamics as functions of the intergrain distance. The corresponding analytic approximations and the criterion for the establishment of a steady-state intergrain distance are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Watanabe and M. Shiratani, Plasma Sources Sci. Technol. 3, 286 (1994).

    Article  ADS  Google Scholar 

  2. Y. Hayashi and K. Tachibana, Jpn. Appl. Phys. 33, L809 (1994).

    Google Scholar 

  3. J. H. Chu and I. Lin, Phys. Rev. Lett. 72, 4009 (1994).

    Article  ADS  Google Scholar 

  4. H. Thomas, G. E. Morfill, V. Demmel, et al., Phys. Rev. Lett. 73, 652 (1994).

    Article  ADS  Google Scholar 

  5. H. Thomas and G. E. Morfill, Nature 379, 806 (1996).

    Article  ADS  Google Scholar 

  6. T. Trottenberg and A. Melzer, and A. Piel, Plasma Sources Sci. Technol. 4, 450 (1995).

    Article  ADS  Google Scholar 

  7. A. Melzer, A. H. Homann, and A. Piel, Phys. Rev. 53, 2757 (1996).

    ADS  Google Scholar 

  8. V. E. Fortov, A. P. Nefedov, V. M. Torchinsky, et al., Phys. Lett. A. A229, 317 (1997).

    Article  ADS  Google Scholar 

  9. S. Ratynskaia, S. Khrapak, A. Zobnin, et al., Phys. Rev. Lett. 93, 085001 (2004).

    Google Scholar 

  10. A. D. Khakhaev, L. A. Luizova, A. A. Piskunov, et al., in Proceedings of the XVI International Conference on Gas Discharges and Their Applications, Xiam, 2006, Vol. 1, p. 341.

  11. V. I. Sysun, A. D. Khakhaev, O. V. Oleshchuk, and A. S. Shelestov, Fiz. Plazmy 31, 834 (2005) [Plasma Phys. Rep. 31, 772 (2005)].

    Google Scholar 

  12. J. P. Baeuf, Phys. Rev. A: 46, 7910 (1992).

    Article  ADS  Google Scholar 

  13. A. V. Zobnin, A. P. Nefedov, V. A. Sinel’shchikov, and V. E. Fortov, Zh. Éksp. Teor. Fiz. 118, 554 (2000) [JETP 91, 483 (2000)].

    Google Scholar 

  14. O. S. Vaulina, A. Yu. Repin, and O. F. Petrov, Fiz. Plazmy 32, 528 (2006) [Plasma Phys. Rep. 32, 485 (2006)].

    Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  16. I. E. Tamm, The Principles of Electricity Theory (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  17. A. F. Filippov, A. V. Pal’, A. N. Starostin, and A. S. Ivanov, Pis’ma Zh. Éksp. Teor. Fiz. 12, 640 (2006) [JETP Lett. 12, 546 (2006)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Sysun, V.I. Sysun, A.D. Khakhaev, A.S. Shelestov, 2008, published in Fizika Plazmy, 2008, Vol. 34, No. 6, pp. 548–555.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sysun, A.V., Sysun, V.I., Khakhaev, A.D. et al. Charge and potential of a dust grain versus the intergrain distance and establishment of the latter in a low-pressure plasma. Plasma Phys. Rep. 34, 501–507 (2008). https://doi.org/10.1134/S1063780X08060068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X08060068

PACS numbers

Navigation