Skip to main content
Log in

Prospects for identification the direct and indirect effects of extra spatial dimensions at the Large Hadron Collider

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The existence of massive graviton states, that may be produced as real and virtual particles in high-energy proton collisions, is predicted by the modern developments of Kaluza–Klein models with extra spatial dimensions. The direct and indirect signatures of large and warped extra spatial dimensions may be revealed by analyzing the specific characteristics of dilepton and diphoton final states formed in proton–proton collisions at the Large Hadron Collider (LHC). Virtual effects in the Kaluza–Klein models with large extra spatial dimensions can be discovered by the specic behavior of the dilpton and diphoton invariant-mass distributions, and their identication (in case of discovery) can be performed by the analysis of their angular distributions with integrated center-edge asymmetry. Assuming the nominal values of the LHC collision energy (14 TeV) and luminosity (100 fb–1), for the models with large extra spatial dimensions we find that the sensitivity to the cutoff parameter M S will extend up to 8.5 and 7.6 TeV for their discovery and identification, respectively. For the Randall–Sundrum model with a warped extra dimension, the LHC experiments will be sensitive to the graviton resonance with mass up to 4.4 and 3.1 TeV for its discovery and identification, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Olive et al. (Particle Data Group Collab.), “Review of Particle Physics,” Chin. Phys. C 38, 090001 (2014).

    Article  ADS  Google Scholar 

  2. G. Aad et al. (ATLAS Collab.), “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1–29 (2012).

    Article  ADS  Google Scholar 

  3. V. Khachatryan et al. (CMS Collab.), “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B 716, 30 (2012).

    Article  ADS  Google Scholar 

  4. H. Terazawa, “Subquark model of leptons and quarks,” Phys. Rev. D 22, 184 (1980).

    Article  ADS  Google Scholar 

  5. S. Dimopoulos, S. Raby, and L. Susskind, “Light composite fermions,” Nucl. Phys. B 173, 208–228 (1980).

    Article  ADS  Google Scholar 

  6. E. Eichten, K. D. Lane, and M. E. Peskin, “New tests for quark and lepton substructure,” Phys. Rev. Lett. 50, 811–814 (1983).

    Article  ADS  Google Scholar 

  7. P. Langacker, “The physics of heavy Z' gauge bosons,” Rev. Mod. Phys. 81, 1199 (2009).

    Article  ADS  Google Scholar 

  8. T. G. Rizzo, “Z’ henomenology and the LHC,” Preprint no. SLAC-PUB-12129, Stanford Linear Accelerator Center, Boulder, 2006.

    Google Scholar 

  9. A. Leike, “The phenomenology of extra neutral gauge bosons,” Phys. Rep. 317, 143 (1999).

    Article  ADS  Google Scholar 

  10. J. L. Hewett and T. G. Rizzo, “Low-energy phenomenology of superstring inspired E6 models,” Phys. Rep. 183, 193 (1989).

    Article  ADS  Google Scholar 

  11. A. V. Gulov, A. A. Kozhushko, V. V. Skalozub, A. A. Pankov, and A. V. Tsytrinov, “Model-independent Z' searches at modern colliders,” Probl. At. Sci. Technol. 2012, 1, 48 (2012).

    Google Scholar 

  12. A. Gulov and A. Kozhushko, “Estimates for the Abelian Z' couplings from the LHC data,” Int. J. Mod. Phys. A 29, 1450001 (2014).

    Article  ADS  Google Scholar 

  13. V. A. Bednyakov, “Superstring Z' boson and the t quark mass,” Sov. J. Nucl. Phys. 53, 486 (1991).

    Google Scholar 

  14. V. A. Bednyakov, “Superstring Z' boson at the c–tau factory,” Sov. J. Nucl. Phys. 52, 949 (1990).

    Google Scholar 

  15. V. A. Bednyakov, “Superstring inspired neutral gauge boson in elastic ep-asymmetries,” Mod. Phys. Lett. A 4, 2689 (1989).

    Article  ADS  Google Scholar 

  16. V. A. Bednyakov and S. G. Kovalenko, “Extra Z' boson in neutrino (anti-neutrino) N elastic scattering and some quasielastic processes,” Phys. Lett. B 214, 640 (1988).

    Article  ADS  Google Scholar 

  17. V. A. Bednyakov and S. G. Kovalenko, “Superstring Z' boson at UNK energies,” Sov. J. Nucl. Phys. 49, 538 (1989).

    Google Scholar 

  18. G. Altarelli, J. Ellis, S. Lola, G. F. Giudice, and M. L. Mangano, “Pursuing interpretations of the HERA large-Q2 data,” Nucl. Phys. B 506, 3–28 (1997).

    Article  ADS  Google Scholar 

  19. V. D. Barger and K. M. Cheung, “Atomic parity violation, leptoquarks, and contact interactions,” Phys. Lett. B 480, 149–154 (2000).

    Article  ADS  Google Scholar 

  20. J. Kalinowski, R. Ruckl, H. Spiesberger, and P. M. Zerwas, “Supersymmetry with R-parity breaking: Contact interactions and resonance formation in leptonic processes at LEP2,” Phys. Lett. B 406, 314 (1997).

    Article  ADS  Google Scholar 

  21. T. G. Rizzo, “Distinguishing indirect signatures of new physics at the NLC: Z' versus R-parity violation,” Phys. Rev. D 59, 113004 (1999).

    Article  ADS  Google Scholar 

  22. F. Cuypers and S. Davidson, “Bileptons: Present limits and future prospects,” Eur. Phys. J. C 2, 503–528 (1998).

    Article  ADS  Google Scholar 

  23. N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, “The hierarchy problem and new dimensions at a millimeter,” Phys. Lett. B 429, 263–272 (1998).

    Article  ADS  MATH  Google Scholar 

  24. T. Han, J. D. Lykken, and R. J. Zhang, “On Kaluza–Klein states from large extra dimensions,” Phys. Rev. D 59, 105006 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  25. J. L. Hewett, “Indirect collider signals for extra dimensions,” Phys. Rev. Lett. 82, 4765–4768 (1999).

    Article  ADS  Google Scholar 

  26. G. F. Giudice, R. Rattazzi, and J. D. Wells, “Quantum gravity and extra dimensions at high-energy colliders,” Nucl. Phys. B 544, 338 (1999).

    Article  Google Scholar 

  27. L. Randall and R. Sundrum, “An alternative to compactification,” Phys. Rev. Lett. 83, 4690–4693 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. H. Davoudiasl, J. L. Hewett, and T. G. Rizzo, “Warped phenomenology,” Phys. Rev. Lett. 84, 2080 (2000).

    Article  ADS  Google Scholar 

  29. K. M. Cheung, “Diphoton signals for low scale gravity in extra dimensions,” Phys. Rev. D 61, 015005 (2000).

    Article  ADS  Google Scholar 

  30. K. M. Cheung and G. Landsberg, “Kaluza–Klein states of the Standard Model gauge bosons: Constraints from high energy experiments,” Phys. Rev. D 65, 076003 (2002).

    Article  ADS  Google Scholar 

  31. B. C. Allanach, K. Odagiri, M. A. Parker, and B. R. Webber, “Searching for narrow graviton resonances with the ATLAS detector at the Large Hadron Collider,” JHEP 9, 019 (2000).

    Article  ADS  Google Scholar 

  32. B. C. Allanach, K. Odagiri, M. J. Palmer, and M. A. Parker, A. Sabetfakhri, and B. R. Webber, “Exploring small extra dimensions at the Large Hadron Collider,” JHEP 0212, 039 (2002).

    Article  ADS  Google Scholar 

  33. V. A. Rubakov, “Large and infinite extra dimensions,” Physics-Uspekhi 44, 871 (2001).

    Article  ADS  Google Scholar 

  34. N. V. Krasnikov and V. A. Matveev, “The search for new physics at the Large Hadron Collider,” Physics- Uspekhi 47, 643 (2004).

    Article  ADS  Google Scholar 

  35. A. O. Barvinskii, “Cosmological branes and macroscopic extra dimensions,” Physics-Uspekhi 48, 545 (2005).

    Article  ADS  Google Scholar 

  36. P. Osland, A. A. Pankov, and N. Paver, “Discriminating graviton exchange effects from other new physics scenarios in e + e collisions,” Phys. Rev. D 68, 015007 (2003).

    Article  ADS  Google Scholar 

  37. E. W. Dvergsnes, P. Osland, A. A. Pankov, and N. Paver, “Center-edge asymmetry at hadron colliders,” Phys. Rev. D 69, 115001 (2004).

    Article  ADS  Google Scholar 

  38. E. W. Dvergsnes, P. Osland, A. A. Pankov, and N. Paver, “Search and identification of extra spatial dimensions at LHC,” Int. J. Mod. Phys. A 20, 2232–2236 (2005).

    Article  ADS  Google Scholar 

  39. A. V. Kisselev, “RS model with a small curvature and two-photon production at the LHC,” JHEP 0809, 039 (2008).

    Article  ADS  Google Scholar 

  40. I. Antoniadis and K. Benakli, “A possible new dimesion at a few TeV,” Phys. Rev. Lett. B 246, 377–384 (1990).

    Article  Google Scholar 

  41. C. D. Hoyle, U. Schmidt, B. R. Heckel, E. G. Adelberger, J. H. Gundlach, D. J. Kapner, and H. E. Swanson, “Sub-millimeter test of the gravitational inversesquare law: A search for “large” extra dimensions,” Phys. Rev. Lett. 86, 1418 (2001)

    Article  ADS  Google Scholar 

  42. J. C. Long, H. W. Chan, and J. C. Price, “Experimental status of gravitational-strength forces in the sub-centimeter regime,” Nucl. Phys. Lett. B 539, 23–34 (1999).

    Article  ADS  Google Scholar 

  43. S. Cullen and M. Perelstein, “Astrophysical implications of the induced neutrino magnetic moment from large extra dimensions,” Phys. Rev. Lett. 83, 268 (1999)

    Article  ADS  Google Scholar 

  44. G. C. McLaughlin and J. N. Ng, “Astrophysical implications of the induced neutrino magnetic moment from large extra dimensions,” Phys. Lett. B 470, 157–162 (1999).

    Article  ADS  Google Scholar 

  45. M. Green and J. Schwarz, “Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory,” Phys. Lett. B 149, 117–122 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  46. G. Aad et al. (ATLAS Collab.), “Search for high-mass resonances decaying to dilepton final states in pp collisions at = 7 TeV with the ATLAS detector,” JHEP 1211, 138 (2012).

    Article  ADS  Google Scholar 

  47. V. Khachatryan et al. (CMS Collab.), “Search for narrow resonances in dilepton mass spectra in pp collisions at = 7 TeV,” Phys. Lett. B 714, 158 (2012).

    Article  ADS  Google Scholar 

  48. V. Khachatryan et al. (CMS Collab.), “Search for large extra spatial dimensions in dielectron production with the CMS detector,” Preprint CMS-PAS-EXO-12-031, CERN, Geneva, 2013.

  49. V. Khachatryan et al. (CMS Collab.), “Search for heavy narrow dilepton resonances in pp collisions at = 7 TeV and = 8 TeV,” Phys. Lett. B 720, 63–82 (2013).

    Article  ADS  Google Scholar 

  50. G. Aad et al. (ATLAS Collab.), “Search for contact interactions and large extra dimensions in the dilepton channel using proton–proton collisions at = 8 TeV with the ATLAS detector,” Eur. Phys. J. C 74, 3134 (2014).

    Article  ADS  Google Scholar 

  51. G. Aad et al. (ATLAS Collab.), “Search for high-mass dilepton resonances in pp collisions at = 8 TeV with the ATLAS detector,” Phys. Rev. D 90, 052005 (2014).

    Article  ADS  Google Scholar 

  52. V. Khachatryan et al. (CMS Collab.), “Search for quark contact interactions and extra spatial dimensions using dijet angular distributions in proton–proton collisions at = 8 TeV,” Phys. Lett. B 746, 79 (2015).

    Article  ADS  Google Scholar 

  53. V. Khachatryan et al. (CMS Collab.), “Search for resonances in the dilepton mass distribution in pp collisions at = 8 TeV,” Preprint No CMS-PAS-EXO-12-061, CERN, Geneva, 2013.

    Google Scholar 

  54. V. Khachatryan et al. (CMS Collab.), “Search for new physics in high mass diphoton events in proton–proton collisions at = 13 TeV,” Preprint No CMS-PAS-EXO- 15-004, CERN, Geneva, 2015.

    Google Scholar 

  55. V. Khachatryan et al. (CMS Collab.), “Searches for quark contact interactions and extra spatial dimensions with dijet angular distributions in proton proton collisions at 13 TeV,” Preprint No CMS-PAS-EXO-15-009, CERN, Geneva, 2015.

    Google Scholar 

  56. G. Aad et al. (ATLAS Collab.), “Search for new phenomena in dijet mass and angular distributions from pp collisions at = 13 TeV with the ATLAS detector,” Phys. Lett. B 754, 302–322 (2016).

    Article  ADS  Google Scholar 

  57. A. Gupta, N. Mondal, and S. Raychaudlhuri, “Constraining large extra dimensions using dilepton data from the Tevatron collider,” Preprint No TIFR-HECR-99-02, Tata Institute of Fundamental Research, Mumbai, 1999.

    Google Scholar 

  58. A. A. Pankov, I. A. Serenkova, A. V. Tsytrinov, and V. A. Bednyakov, “Searches for and identification of s s s s s s s s s s effects of extra spatial dimensions in dilepton and diphoton production at the Large Hadron Collider,” Phys. Atom. Nucl. 78, 463–476 (2015).

    Article  ADS  Google Scholar 

  59. P. Mathews, V. Ravindran, K. Sridhar, and W. L. van Neerven, “Next-to-leading order QCD corrections to the Drell–Yan cross section in models of TeV-scale gravity,” Nucl. Phys. B 713, 333 (2005).

    Article  ADS  Google Scholar 

  60. J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. Nadolsky, and W. K. Tung, “New generation of parton distributions with uncertainties,” JHEP 0207, 012 (2002).

    Article  ADS  Google Scholar 

  61. A. A. Pankov, “Effects of new neutral currents at linear electron positron colliders,” Phys. Atom. Nucl, 65, 521 (2002).

    Article  ADS  Google Scholar 

  62. O. J. P. Eboli, T. Han, M. B. Magro, and P. G. Mercadante, “Diphoton signals for large extra dimensions at the Tevatron and CERN LHC,” Phys. Rev. D 61, 094007 (2000).

    Article  ADS  Google Scholar 

  63. C. Collard, M.-C. Lemaire, P. Traczyk, and G. Wrochna, “Prospects for study of Randall–Sundrum gravitons in the CMS experiment”, Preprint No CERN-CMS-NOTE-2002-050, CERN, Geneva, 2002.

    Google Scholar 

  64. V. V. Kabachenko, A. Miagkov, and A. Zenin, “Sensitivity of the ATLAS detector to extra dimensions in diphoton and di-lepton production processes,” Preprints Nos ATL-PHYS-2001-012, ATL-COM-PHYS-2001-009, CERN-ATL-PHYS-2001-012, CERN, Geneva, 2001.

    Google Scholar 

  65. M. C. Kumar, P. Mathews, A. A. Pankov, N. Paver, V. Ravindran, and V. A. Tsytrinov, “Spin-analysis of s-channel diphoton resonances at the LHC,” Phys. Rev. D 84, 115008 (2011).

    Article  ADS  Google Scholar 

  66. L. D. Landau, “The moment of a 2-photon system,” Dokl. Akad. Nauk. SSSR 60, 207–209 (1948) [in Russian].

    Google Scholar 

  67. C. N. Yang, “Selection rules for the dematerialization of a particle into two photons,” Phys. Rev. 77, 242–245 (1950).

    Article  ADS  MATH  Google Scholar 

  68. H. Georgi, “Unparticle physics,” Phys. Rev. Lett. 98, 221601 (2007).

    Article  ADS  Google Scholar 

  69. H. Georgi, “Another odd thing about unparticle physics,” Phys. Lett. B 650, 275 (2007).

    Article  ADS  Google Scholar 

  70. K. Cheung, W. Y. Keung, and T. C. Yuan, “Collider signals of unparticle physics,” Phys. Rev. Lett. 99, 051803 (2007).

    Article  ADS  Google Scholar 

  71. K. Cheung, W. Y. Keung, and T. C. Yuan, “Collider phenomenology of unparticle physics,” Phys. Rev. D 76, 055003 (2007).

    Article  ADS  Google Scholar 

  72. P. Osland, A. A. Pankov, N. Paver, and A. V. Tsytrinov, “Sneutrino identification in dilepton events at the LHC,” Phys. Rev. D 82, 115017 (2010).

    Article  ADS  Google Scholar 

  73. P. Osland, A. A. Pankov, N. Paver, and A. V. Tsytrinov, “Spin and model identification of Z' bosons at the LHC,” Phys. Rev. D 79, 115021 (2009).

    Article  ADS  Google Scholar 

  74. P. Osland, A. A. Pankov, N. Paver, and A. V. Tsytrinov, “Spin identification of the Randall–Sundrum resonance in lepton-pair production at the LHC,” Phys. Rev. D 78, 035008 (2008).

    Article  ADS  Google Scholar 

  75. I. A. Serenkova, A. A. Pankov, A. V. Tsytrinov, and V. A. Bednyakov, “Spin identification of graviton resonances in the process ppe + e - + X at the Large Hadron Collider (LHC),” Phys. Atom. Nucl. 73, 1266 (2010).

    Article  ADS  Google Scholar 

  76. V. Khachatryan et al. (CMS Collab.), “Search for physics beyond the Standard Model in dilepton mass spectra in proton–proton collisions at = 8 TeV,” JHEP 04, 025 (2015).

    Article  ADS  Google Scholar 

  77. G. Aad et al. (ATLAS Collab.), “Search for high-mass dilepton resonances in pp collisions at = 8 TeV with the ATLAS detector,” Phys. Rev. D 90, 052005 (2014).

    Article  ADS  Google Scholar 

  78. B. Allanach et al. (R Parity Working Group), Searching for R-parity violation at Run-II of the Tevatron, Fermilab, Batavia, 2000.

    Google Scholar 

  79. G. Aad et al. (ATLAS Collab.), “Search for new phenomena in the dilepton final state using proton–proton collisions at = 13 TeV with the ATLAS detector,” Preprint No ATLAS-CONF-2015-070, CERN, Geneva, 2015.

    Google Scholar 

  80. V. Khachatryan et al. (CMS Collab.), “Search for a narrow resonance produced in 13 TeV pp collisions decaying to electron pair or muon pair final states,” Preprint ? CMS-PAS-EXO-15-005, CRN, Geneva, 2015.

    Google Scholar 

  81. R. Cousins, J. Mumford, J. Tucker, and V. Valuev, “Spin discrimination of new heavy resonances at the LHC,” JHEP 0511, 046 (2005).

    Article  ADS  Google Scholar 

  82. I. Belotelov, I. Golutvin, A. Lanyov, V. Palichik, E. Rogalev, M. Savina, S. Shmatov, P. Traczyk, and G. Wrochna, “Search for Randall–Sundrum graviton decay into muon pairs,” Preprint No CERN-CMSNOTE-2006-104, CERN, Geneva, 2006.

    Google Scholar 

  83. I. A. Golutvin, V. Palichik, M. V. Savina, and S. V. Shmatov, “Search for new neutral gauge bosons at the LHC,” Phys. Atom. Nucl. 70, 56 (2007).

    Article  ADS  Google Scholar 

  84. M. Karagoz, “Searches for new physics using high mass dimuons at the CDF experiment,” Preprint No FERMILAB-THESIS-2004-47, Fermilab, Batavia, 2004.

    Book  Google Scholar 

  85. P. Aurenche, A. Douiri, R. Baier, M. Fontannaz, and D. Schiff, “Large double photon production in hadronic collisions: Beyond leading logarithm QCD calculation,” Z. Phys. C 29, 459–475 (1985).

    Article  ADS  Google Scholar 

  86. B. Bailey and D. Graudenz, “Impact of QCD corrections on the search for the intermediate mass Higgs boson,” Phys. Rev. D 49, 1486–1489 (1994).

    Article  ADS  Google Scholar 

  87. C. Balazs and C.-P. Yuan, “Higgs boson production at hadron colliders with soft gluon effects: Backgrounds,” Phys. Rev. D 59, 114007 (1999).

    Article  ADS  Google Scholar 

  88. T. Binoth, J. Ph. Guillet, E. Pilon, and M. Werlen, “Beyond leading order effects in photon pair production at the Tevatron,” Phys. Rev. D 63, 114016 (2001).

    Article  ADS  Google Scholar 

  89. T. Binoth, J. Ph. Guillet, E. Pilon, and M. Werlen, “A full next to leading order study of direct photon pair production in hadronic collisions,” Eur. Phys. J. C 16, 311–330 (2000).

    Article  ADS  Google Scholar 

  90. E. L. Berger, E. Braaten, and R. D. Field, “Large-pT production of single and double photons in proton–proton and pion–proton collisions,” Nucl. Phys. B 239, 52–92 (1984).

    Article  ADS  Google Scholar 

  91. A. De Rujula, J. Lykken, M. Pierini, C. Rogan, and M. Spiropulu, “Higgs look-alike at the LHC,” Phys. Rev. D 82, 013003 (2010).

    Article  ADS  Google Scholar 

  92. P. K. Das, “Neutral Z bozon pair production due to radion resonances in the Randall–Sundrum model: Prospects at the CERN LHC,” Phys. Rev. D 72, 055009 (2005).

    Article  ADS  Google Scholar 

  93. P. K. Das and S. Raychaudhuri, “On distinguishing radions from Higgs bosons,” Phys. Lett. B 618, 221–228 (2005).

    Article  ADS  Google Scholar 

  94. P. K. Dominici, B. Grzadkowski, J. F. Gunion, and M. Toharia, “The scalar sector of the Randall–Sundrum model,” Nucl. Phys. B 671, 243–292 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. K. Cheung, C. S. Kim, and J. Song, “Probing the radion–Higgs mixing at hadronic colliders,” Phys. Rev. D 69, 075011 (2004).

    Article  ADS  Google Scholar 

  96. I. A. Serenkova, A. A. Pankov, and A. V. Tsytrinov, “Spin determination of Randall–Sundrum graviton excitations decaying into two photons at the LHC with ATLAS,” Nonlinear Phenomena in Complex Systems 13, No 1, 85 (2010).

    Google Scholar 

  97. R. Barbieri and R. Torre, “Signals of single particle production at the earliest LHC,” Phys. Lett. B 695, 259 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Serenkova.

Additional information

Original Russian Text © A.A. Pankov, I.A. Serenkova, A.V. Tsytrinov, V.A. Bednyakov, 2017, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2017, Vol. 48, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankov, A.A., Serenkova, I.A., Tsytrinov, A.V. et al. Prospects for identification the direct and indirect effects of extra spatial dimensions at the Large Hadron Collider. Phys. Part. Nuclei 48, 415–454 (2017). https://doi.org/10.1134/S1063779617030066

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779617030066

Navigation