Skip to main content
Log in

Application of the theory of open quantum systems to nuclear physics problems

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Quantum diffusion equations with transport coefficients explicitly depending on time are derived from the generalized non-Markovian Langevin equations. The asymptotic behavior of the friction and diffusion coefficients is investigated in the case of the FC and RWA couplings between the collective and internal subsystems. An asymptotic expression is obtained for the propagator of the density matrix of the open quantum system with the general quadratic Hamiltonian, linearly coupled (in coordinate and momentum) to internal degrees of freedom. The effect of different sets of transport coefficients on the decoherence and decay rate of the metastable state is investigated using the master equation for the reduced density matrix of open quantum systems. The developed approach is used to study the capture of the projectile nucleus by the target nucleus at energies near the Coulomb barrier. Capture cross sections in asymmetric reactions are well described with allowance for the calculated capture probabilities. Particular cases where dissipation favors penetration through the potential barrier are found. The generalized Kramers formula for the quasi-stationary decay rate of the quantum metastable systems is analytically derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Bogolyubov, Selected Works in Three Volumes (Naukova Dumka, Kiev, 1971) [in Russian].

    MATH  Google Scholar 

  2. A. O. Caldeira and A. J. Leggett, “Path integral approach to quantum Brownian motion,” Physica A 121, 587 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. “Quantum tunneling in a dissipative system,” Ann. Phys. 149, 374 (1983)

  4. “Influence of dissipation on quantum tunneling in macroscopic systems,” Phys. Rev. Lett. 46, 211 (1981)

  5. “Comment on ‘Probabilities for Quantum Tunneling through a Barrier with Linear Passive Dissipation’”, Phys. Rev. Lett. 48, 1571 (1982).

  6. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).

    MATH  Google Scholar 

  7. H. Grabert, P. Schramm, and G.-L. Ingold, “Quantum Brownian motion: The functional integral approach,” Phys. Rep. 168, 115 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  8. P. Talkner, “The failure of the quantum regression hypothesis,” Ann. Phys. (NY), 1986), 167, 390 (1986).

    Article  MathSciNet  Google Scholar 

  9. C. W. Gardiner, Quantum Noise (Berlin, Springer, 1991).

    Book  MATH  Google Scholar 

  10. V. V. Dodonov, O. V. Man’ko, and V. I. Man’ko, “Quantum nonstationary oscillator: Models and applications,” J. Russ. Laser Res. 16, 1 (1995)

    Article  MATH  Google Scholar 

  11. V. V. Dodonov and V. I. Man’ko, “Density matrix and Wigner functions of quasiclassical quantum systems,” Tr. FIAN 167, 7 (1986).

    MathSciNet  Google Scholar 

  12. G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. “Brownian motion of a quantum harmonic oscillator,” Rep. Math. Phys. 10, 393 (1976).

  14. H. Dekker, “Classical and quantum mechanics of the damped harmonic oscillator,” Phys. Rep. 80, 1 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Isar, A. Sandulescu, H. Scutaru, E. Stefanescu, W. Scheid, “Open quantum systems,” Int. J. Mod. Phys. A 3, 635 (1994).

    ADS  MathSciNet  Google Scholar 

  16. A. Sandulescu and H. Scutaru, “Open quantum systems and the damping of collective modes in deep inelastic collisions,” Ann. Phys. (N.Y.) 173, 277 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  17. H. J. Carmichael, An Open System Approach to Quantum Optics (Berlin, Springer, 1993).

    MATH  Google Scholar 

  18. Yu. L. Klimontovich, Statistical Theory of Open Systems (Kluwer Academic, 1995).

    Book  MATH  Google Scholar 

  19. D. Zubarev, G. Röpke, and V. Morozov, Statistical Mechanics of Nonequilibrium Processes (Berlin, Akademie Verlag, 1997).

    MATH  Google Scholar 

  20. U. Weiss, Quantum Dissipative Systems (Singapore, World Scientific, 1999).

    Book  MATH  Google Scholar 

  21. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Friction and diffusion coefficients in coordinate in nonequilibrium nuclear processes,” Nucl. Phys. A 645, 376 (1999).

    Article  ADS  MATH  Google Scholar 

  22. Z. Kanokov, Yu. V. Palchikov, G. G. Adamian, N. V. Antonenko, W. Scheid, “Non-Markovian dynamics of quantum systems. I. Formalism and transport coefficients,” Phys. Rev. E 71, 016121 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  23. Yu. V. Palchikov, Z. Kanokov, G. G. Adamian, N. V. Antonenko, and W. Scheid, “Non-Markovian dynamics of quantum systems. II. Decay rate, capture, and pure states,” Phys. Rev. E 71, 016122 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  24. Sh. A. Kalandarov, Z. Kanokov, G. G. Adamian, and N. V. Antonenko, “Transport coefficients of a quantum system interacting with a squeezed heat bath,” Phys. Rev. E 74, 011118 (2006)

    Article  ADS  Google Scholar 

  25. Sh. A. Kalandarov, Z. Kanokov, G. G. Adamian, and N. V. Antonenko, “Influence of external magnetic field on dynamics of open quantum systems,” Phys. Rev. E 75, 031115 (2007).

    Article  ADS  Google Scholar 

  26. V. V. Sargsyan, Yu. V. Palchikov, Z. Kanokov, G. G. Adamian, and N. V. Antonenko, “Coordinatedependent diffusion coefficients: Decay rate in open quantum systems,” Phys. Rev. A 75, 062115 (2007)

    Article  ADS  Google Scholar 

  27. V. V. Sargsyan, Yu. V. Palchikov, Z. Kanokov, G. G. Adamian, and N. V. Antonenko, “Fission rate and transient time with a quantum master equation,” Phys. Rev. C 76, 064604 (2007)

    Article  ADS  Google Scholar 

  28. V. V. Sargsyan, Z. Kanokov, G. G. Adamian, N. V. Antonenko, and W. Scheid, “Capture process in nuclear reactions with a quantum master equation,” Phys. Rev. C 80, 034606 (2009)

    Article  ADS  Google Scholar 

  29. V. V. Sargsyan, Z. Kanokov, G. G. Adamian, and N. V. Antonenko, “Quantum statistical effects in nuclear reactions, fission and open quantum systems,” Phys. Part. Nucl. 41, 175 (2010).

    Article  Google Scholar 

  30. V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, and W. Scheid, “Peculiarities of sub-barrier fusion with quantum diffusion approach,” Eur. Phys. J. A 45, 125 (2010)

    Article  ADS  Google Scholar 

  31. V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, W. Scheid, and H. Q. Zhang, “Subbarrier capture with quantum diffusion approach: actinide-based reactions,” Eur. Phys. J. A 47, 38 (2011)

    Article  ADS  Google Scholar 

  32. R. A. Kuzyakin, V. V. Sargsyan, G. G. Adamian, and N. V. Antonenko, “Peculiarities of parabolic-barrier penetrability and thermal decay rate with the quantum diffusion approach,” Phys. Rev. A 83, 062117 (2011)

    Article  ADS  Google Scholar 

  33. R. A. Kuzyakin, V. V. Sargsyan, G. G. Adamian, and N. V. Antonenko, “Probability of passing through a parabolic barrier and thermal decay rate: Case of linear coupling both in momentum and in coordinate,” Phys. Rev. A 83, 032117 (2011)

    Article  ADS  Google Scholar 

  34. R. A. Kuzyakin, V. V. Sargsyan, G. G. Adamian, and N. V. Antonenko, “Quantum diffusion description of the sub-barrier capture process in heavy ion reactions,” Phys. At. Nucl. 75, 439 (2009)

    Article  Google Scholar 

  35. R. A. Kuzyakin, V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, E. E. Saperstein, and S. V. Tolokonnikov, “Isotopic trends of capture cross section and mean-square angular momentum of the captured system,” Phys. Rev. C 85, 034612 (2012)

    Article  ADS  Google Scholar 

  36. R. A. Kuzyakin, V. V. Sargsyan, G. G. Adamian, and N. V. Antonenko, “Total and partial capture cross sections in reactions with deformed nuclei at energies near and below of Coulomb barrier,” Phys. At. Nucl. 76, 716 (2013).

    Article  Google Scholar 

  37. V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, W. Scheid, and H. Q. Zhang, “Effects of nuclear deformation and neutron transfer in capture processes, and fusion hindrance at deep sub-barrier energies,” Phys. Rev. C 84, 064614 (2011)

    Article  ADS  Google Scholar 

  38. V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, W. Scheid, and H. Q. Zhang, “Role of neutron transfer in capture processes at sub-barrier energies,” Phys. Rev. C 85, 024616 (2012)

    Article  ADS  Google Scholar 

  39. V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, W. Scheid, C. J. Lin, and H. Q. Zhang, “Deformation effect in the sub-barrier capture process,” Phys. Rev. C 85, 037602 (2012)

    Article  ADS  Google Scholar 

  40. V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, W. Scheid, and H. Q. Zhang, “Quasifission at extreme sub-barrier energies,” Eur. Phys. J. A 48, 188 (2012)

    Article  ADS  Google Scholar 

  41. V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, W. Scheid, and H. Q. Zhang, “Sub-barrier capture reactions with O and Ca beams,” Eur. Phys. J. A 49, 54 (2013)

    Article  ADS  Google Scholar 

  42. V. V. Sargsyan, A. S. Zubov, G. G. Adamian, N. V. Antonenko, and S. Heinz, “Production of exotic isotopes in complete fusion reactions with radioactive beams,” Phys. Rev. C 88, 054609 (2013)

    Article  ADS  Google Scholar 

  43. V. V. Sargsyan, G. Scamps, G. G. Adamian, N. V. Antonenko, and D. Lacroix, “Neutron-pair transfer in sub-barrier capture process,” Phys. Rev. C 88, 064601 (2013)

    Article  ADS  Google Scholar 

  44. A. A. Ogloblin et al., “Role of neutron transfer in asymmetric fusion reactions at sub-barrier energies,” Eur. Phys. J. A 50, 157 (2014)

    Article  ADS  Google Scholar 

  45. G. Scamps, V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, and D. Lacroix, “Analysis of the dependence of the few-neutron transfer probability on the Q value magnitudes,” Phys. Rev. C 91, 024601 (2015)

    Article  ADS  Google Scholar 

  46. V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, W. Scheid, and H. Q. Zhang, “Examination of the different roles of neutron transfer in the sub-barrier fusion reactions S + Zr and Ca + Zr,” Phys. Rev. C 91, 014613 (2015).

    Article  ADS  Google Scholar 

  47. G. G. Adamian, N. V. Antonenko, and A. S. Zubov, “Dinuclear systems in complete fusion reactions,” Phys. Part. Nucl. 45, 848 (2014)

    Article  Google Scholar 

  48. V. V. Volkov, “Complete fusion of atomic nuclei: nuclear fusion within the framework of the concept of the double nuclear system,” Fiz. Elem. Chastits At. Yadra 35, 797 (2004)

    Google Scholar 

  49. A. S. Zubov, G. G. Adamian, and N. V. Antonenko, “Application of statistical methods for analysis of heavy-ion reactions in the framework of a dinuclear system model,” Phys. Part. Nucl. 40, 847 (2009)

    Article  Google Scholar 

  50. Sh. A. Kalandarov, G. G. Adamian, and N. V. Antonenko, “Emission of heavy clusters in nuclear reactions at low collision energies,” Phys. Part. Nucl. 43, 825 (2012)

    Article  Google Scholar 

  51. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Clustering effects within the dinuclear model,” in Clusters in Nuclei, Vol. 2, Ed. by C. Beck, Lect. Notes Phys. 848, 165 (2012).

    Article  ADS  Google Scholar 

  52. P. Fröbrich, “Fusion and capture of heavy ions above the barrier: Analysis of experimental data with the surface friction model,” Phys. Rep. 116, 337 (1984).

    Article  ADS  Google Scholar 

  53. G. D. Adeev, I. I. Gonchar, V. V. Pashkevich, N. I. Pischasov, and O. I. Serdyuk, “Diffusion model of formation of fission product distributions,” Fiz. Elem. Chastits At. Yadra 19, 1229 (1988)

    Google Scholar 

  54. G. D. Adeev, “Effect of dynamic characteristics of fission on formation of the charge distribution of fragments,” Fiz. Elem. Chastits At. Yadra 23, 1572 (1992).

    Google Scholar 

  55. I. I. Gonchar, “Langevin fluctuation–dissipation dynamics of fission of excited nuclei,” Fiz. Elem. Chastits At. Yadra 23, 932 (1995).

    Google Scholar 

  56. G. D. Adeev, A. V. Karpov, P. N. Nadtochii, and D. V. Vanin, “Multidimensional stochastic approach to fission dynamics of excited nuclei,” Fiz. Elem. Chastits At. Yadra 36, 731 (2005).

    Google Scholar 

  57. G. G. Adamian, A. K. Nasirov, N. V. Antonenko, and R. V. Jolos, “The influence of the shell effects on dynamics of deep-inelastic collisions of heavy ions,” Phys. Part. Nucl. 25, 583 (1994)

    Google Scholar 

  58. V. V. Volkov, “Deep inelastic transfer reactions — the new type of reactions between complex nuclei,” Phys. Rep. 44, 93 (1978)

    Article  ADS  Google Scholar 

  59. Nuclear Reactions of Deep-Inelastic Transfers (Energoizdat, Moscow, 1982).

  60. W. U. Schröder and J. R. Huizenga, “Damped Nuclear Reactions,” in Treatise on Heavy-Ion Science, Ed. by D. A. Bromley (Plenum Press, New York, 1984), Vol. 2, p. 115.

    Google Scholar 

  61. V. V. Volkov, “Production of nuclei far from stability,” in Treatise on Heavy-Ion Science, Ed. by D. A. Bromley (Plenum Press, New York, 1989), Vol. 8, p. 255.

    Google Scholar 

  62. J. O. Newton, “Nuclear fission induced by heavy ions,” Fiz. Elem. Chastits At. Yadra 21, 821 (1990)

    Google Scholar 

  63. M. G. Itkis and A. Ya. Rusanov, “Fission of heated nuclei in reactions with heavy ions: static and dynamic aspects,” Fiz. Elem. Chastits At. Yadra 29, 389 (1998).

    Google Scholar 

  64. S. T. Belyaev and V. G. Zelevinskii, “Niels Bohr and nuclear physics,” Usp. Fiz. Nauk 147, 210 (1985).

    Article  Google Scholar 

  65. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Tunneling with dissipation in open quantum systems,” Phys. Lett. A 244, 482 (1998).

    Article  ADS  Google Scholar 

  66. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Diffusion coefficients in coordinate in density matrix description of non-equilibrium quantum processes,” Phys. Lett. A 260, 39 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Yu. V. Palchikov, G. G. Adamian, N. V. Antonenko, and W. Scheid, “Effect of transport coefficients on the time dependence of a density matrix,” J. Phys. A: Math. Gen. 33, 4265 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Yu. V. Palchikov, G. G. Adamian, N. V. Antonenko, and W. Scheid, “Generalization of Kramers formula for open quantum systems,” Physica A, Stat. Mech. and its Apll., 316, 297 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. V. V. Sargsyan, A. S. Zubov, Z. Kanokov, G. G. Adamian, N. V. Antonenko, “Quatum-mechanical description of the initial stage of the fusion reaction,” Yad. Fiz. 72, 459 (2009).

    Google Scholar 

  70. V. G. Zelevinskii, “Some questions of heavy-ion interaction dynamics,” in Proceeding of the XII Winter School (Leningrad Inst. Nucl. Phys., Leningrad, 1977), p. 53

    Google Scholar 

  71. R. V. Jolos, S. P. Ivanova, and V. V. Ivanov, “Initial stage of heavy-ion interaction and kinetic energy dissipation mechanism,” Yad. Fiz. 40, 117 (1984)

    Google Scholar 

  72. S. P. Ivanova and R. V. Jolos, “Current and density algebra approach to low-energy heavy-ion collisions,” Nucl. Phys. A 530, 232 (1991).

    Article  ADS  Google Scholar 

  73. K. Lindenberg and B. West, “Statistical properties of quantum systems: the linear oscillator,” Phys. Rev. A 30, 568 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  74. V. V. Sargsyan, Z. Kanokov, G. G. Adamian, and N. V. Antoneko, “Quantum non-Markovian Langevin equations and transport coefficients,” Phys. At. Nucl. 68, 2009 (2005).

    Article  Google Scholar 

  75. G. G. Adamian, N. V. Antonenko, Z. Kanokov, and V. V. Sargsyan, “Quantum non-Markovian stochastic equations,” Theor. Math. Phys. 145, 1443 (2005).

    Article  MATH  Google Scholar 

  76. V. V. Sargsyan, Z. Kanokov, G. G. Adamian, and N. V. Antonenko, “Quantum nonMarkovian Langevin equations and transport coefficients for an inverted oscillator,” Theor. Math. Phys. 156, 1331 (2008).

    Article  MATH  Google Scholar 

  77. V. V. Sargsyan, Z. Kanokov, G. G. Adamian, and N. V. Antonenko, “Quantum non-Markovian Langevin formalism for heavy ion reactions near the Coulomb barrier,” Phys. Rev. C 77, 024607 (2008).

    Article  ADS  Google Scholar 

  78. H. Hofmann and D. Kiderlen, “A self-consistent treatment of damped motion for stable and unstable collective modes,” Int. J. Mod. Phys. E 7, 243 (1998).

    Article  ADS  Google Scholar 

  79. V. V. Dodonov and V. I. Man’ko, in Universal Invariants of Quantum Systems and Generalized Uncertainty Relations: Group-Theoretical Methods in Physics, Ed. by I. M. Makarov (Nauka, Moscow, 1983) [in Russian].

  80. N. V. Antonenko, S. P. Ivanova, R. V. Jolos, and W. Scheid, “Application of the Lindblad axiomatic approach to non-equilibrium nuclear processes,” J. Geom. Phys. 20, 1447 (1994).

    Article  Google Scholar 

  81. S. A. Adelman, “Fokker–Planck equations for simple non-Markovian systems,” J. Chem. Phys. 64, 124 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  82. R. Karrlein and H. Grabert, “Exact time evolution and master equations for the damped harmonic oscillator,” Phys. Rev. E 55, 153 (1997).

    Article  ADS  Google Scholar 

  83. G. J. Papadopoulos, “Time-dependent quantum tunnelling via crossover processes,” J. Phys. A 23, 935 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  84. V. V. Dodonov and D. E. Nikonov, “Application of Feynman propagators to the motion of one-dimensional wave packets,” J. Sov. Laser Res. 12, 461 (1991).

    Article  Google Scholar 

  85. S. Baskoutas and A. Jannussis, “Quantum tunnelling effect for the Inverted Caldirola–Kanai Hamiltonian,” J. Phys. A: Math. Gen. 25, L1299 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  86. H. Hofmann, “A quantal transport theory for nuclear collective motion: The merits of a locally harmonic approximation,” Phys. Rep. 284, 137 (1997).

    Article  ADS  Google Scholar 

  87. E. G. Harris, “Quantum tunneling in dissipative systems,” Phys. Rev. A 48, 995 (1993).

    Article  ADS  Google Scholar 

  88. N. Gisin, “Microscopic derivation of a class of non-linear dissipative Schrödinger-like equations,” Physica A, Stat. Mech. and its Apll., 11, 364 (1980).

    MathSciNet  Google Scholar 

  89. P. Ao and D. J. Thouless, “Tunneling of a quantized vortex: roles of pinning and dissipation,” Phys. Rev. Lett. 72, 132 (1994).

    Article  ADS  Google Scholar 

  90. M. Razavy and A. Pimpale, “Quantum tunneling: A general study in multi-dimensional potential barriers with and without dissipative coupling,” Phys. Rep. 168, 305 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  91. M. Razavy “Heisenberg’s equations of motion for dissipative tunneling,” Phys. Rev. A 41, 6668 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  92. G. G. Adamian, N. V. Antonenko, R. V. Jolos, S. P. Ivanova, and O. I. Melnikova, “Effective nucleus–nucleus potential for calculation of potential energy of a dinuclear system,” Int. J. Mod. Phys. E 5, 191 (1996).

    Article  ADS  Google Scholar 

  93. K. Washiyama, D. Lacroix, and S. Ayik, “One-body energy dissipation in fusion reactions from mean-field theory,” Phys. Rev. C 79, 024609 (2009)

    Article  ADS  Google Scholar 

  94. S. Ayik, K. Washiyama, and D. Lacroix, “Fluctuation and dissipation dynamics in fusion reactions from a stochastic mean-field approach,” Phys. Rev. C 79, 054606 (2009).

    Article  ADS  Google Scholar 

  95. C. R. Morton, A. C. Berriman, M. Dasgupta, D. J. Hinde, J. O. Newton, K. Hagino, and I. J. Thompson, “Coupled-channels analysis of the O + Pb fusion barrier distribution,” Phys. Rev. C 60, 044608 (1999).

    Article  ADS  Google Scholar 

  96. D. J. Hinde, A. C. Berriman, M. Dasgupta, J. R. Leigh, J. C. Mein, C. R. Morton, and J. O. Newton, “Limiting angular momentum for statistical model description of fission,” Phys. Rev. C 60, 054602 (1999).

    Article  ADS  Google Scholar 

  97. B. B. Back, R. R. Betts, J. E. Gindler, B. D. Wilkins, S. Saini, M. B. Tsang, C. K. Gelbke, W. G. Lynch, M. A. McMahan, and P. A. Baisden, “Angular distributions in heavy-ion-induced fission,” Phys. Rev. C 32, 195 (1985).

    Article  ADS  Google Scholar 

  98. R. Bock et al., “Dynamics of the fusion process,” Nucl. Phys. A 388, 334 (1982).

    Article  ADS  Google Scholar 

  99. D. J. Hinde, C. R. Morton, M. Dasgupta, J. R. Leigh, J. C. Mein, and H. Timmers, “Competition between fusion-fission and quasi-fission in the reaction Si + Pb,” Nucl. Phys. A 592, 271 (1995).

    Article  ADS  Google Scholar 

  100. M. Dasgupta and D. J. Hinde, “Importance of entrance channel dynamics on heavy element formation,” Nucl. Phys. A 734, 148 (2004).

    Article  ADS  Google Scholar 

  101. D. J. Hinde, M. Dasgupta, N. Herrald, R. G. Neilson, J. O. Newton, and M. A. Lane, “Isotopic dependence of fusion barrier energies in reactions forming heavy elements,” Phys. Rev. C 75, 054603 (2007).

    Article  ADS  Google Scholar 

  102. W. Loveland, D. Peterson, A. M. Vinodkumar, P. H. Sprunger, D. Shapira, J. F. Liang, G. A. Souliotis, D. J. Morrissey, and P. Lofy, “Fusion enhancement in the S + Pb reaction,” Phys. Rev. C 74, 044607 (2006).

    Article  ADS  Google Scholar 

  103. A. J. Pacheco, J. O. Fernández Niello, D. E. DiGregorio, M. di Tada, J. E. Testoni, Y. Chan, E. Chavez, S. Gazes, E. Plagnol, and R. G. Stokstad, “Capture reactions in the Ca + Au and Ca + Pb systems,” Phys. Rev. C 45, 2861 (1992).

    Article  ADS  Google Scholar 

  104. J. Toke et al., “Quasi-fission — the mass-drift mode in heavy-ion reactions,” Nucl. Phys. A 440, 327 (1985).

    Article  ADS  Google Scholar 

  105. R. S. Naik, W. Loveland, P. H. Sprunger, A. M. Vinodkumar, D. Peterson, C. L. Jiang, S. Zhu, X. Tang, E. F. Moore, and P. Chowdhury, “Measurement of the fusion probability PCN for the reaction of 50Ti with 208Pb,” Phys. Rev. C 76, 054604 (2007).

    Article  ADS  Google Scholar 

  106. H.-G. Clerc, J. G. Keller, C.-C. Sahm, K.-H. Schmidt, H. Schulte, and D. Vermeulen, “Fusion-fission and neutron-evaporation-residue cross-sections in 40Arand 50Ti-induced fusion reactions,” Nucl. Phys. A 419, 571 (1984).

    Article  ADS  Google Scholar 

  107. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Characteristics of quasifission products within the dinuclear system model,” Phys. Rev. C 68, 034601 (2003).

    Article  ADS  Google Scholar 

  108. L. F. Canto, P. R. S. Gomes, J. Lubian, L. C. Chamon, and E. Crema, “Disentangling static and dynamic effects of low breakup threshold in fusion reactions,” J. Phys. G 36, 015109 (2009)

    Article  ADS  Google Scholar 

  109. L. F. Canto, P. R. S. Gomes, J. Lubian, L. C. Chamon, and E. Crema, “Dynamic effects of breakup on fusion reactions of weakly bound nuclei,” Nucl. Phys. A 821, 51 (2009).

    Article  ADS  Google Scholar 

  110. P. Fröbrich and R. Lipperheide, Theory of Nuclear Reactions (Clarendon, Oxford, 1996).

    Google Scholar 

  111. S. Hofmann and G. Münzenberg, “The discovery of the heaviest elements,” Rev. Mod. Phys. 72, 733 (2000).

    Article  ADS  Google Scholar 

  112. K. Fujikawa, S. Iso, M. Sasaki, and H. Suzuki, “Canonical formulation of quantum tunneling with dissipation,” Phys. Rev. Lett. 68, 1093 (1992).

    Article  ADS  Google Scholar 

  113. G. W. Ford, J. T. Lewis, and R. F. O’Connel, “Quantum tunneling in a blackbody radiation field,” Phys. Lett. A 158, 367 (1991).

    Article  ADS  Google Scholar 

  114. A. Widom and T. D. Clark, “Probabilities for quantum tunneling through a barrier with linear passive dissipation,” Phys. Rev. Lett. 48, 63 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  115. A. O. Caldeira and A. J. Leggett, “Comment on "Probabilities for quantum tunneling through a barrier with linear passive dissipation,” Phys. Rev. Lett. 48, 1571 (1982)

    Article  ADS  Google Scholar 

  116. A. Widom and T. D. Clark, “Quantum electrodynamic tunneling in a model ferroelectric capacitor with linear passive dissipation,” Phys. Rev. B 30, 1205 (1984).

    Article  ADS  Google Scholar 

  117. R. Bruinsma and P. Bak, “Quantum tunneling, dissipation, and fluctuations,” Phys. Rev. Lett. 56, 420 (1986).

    Article  ADS  Google Scholar 

  118. W. T. Strunz, “Path integral, semiclassical and stochastic propagators for Markovian open quantum systems,” J. Phys. A: Math. Gen. 30, 4053 (1977).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. H. A. Kramers, “Brownian motion in a field of force and the diffusion model of chemical reactions,” Physica VII, 284 (1940).

  120. P. Hänggi, P. Talkner, and M. Borkovec, “Reaction-rate theory: Fifty years after Kramers,” Rev. Mod. Phys. 62, 251 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  121. H. Dekker and A. M. van den Brink, “Low-dimensional turnover theory of thermal activation,” Phys. Rev. E 49, 2559(1994)

    Article  ADS  Google Scholar 

  122. A. M. van den Brink and H. Dekker, “Reaction rate theory: Weakto strongfriction turnover in Kramers’ Fokker–Planck model,” Phys. A (Amsterdam, Neth.) 237, 515 (1997).

    Article  ADS  Google Scholar 

  123. V. I. Melnikov and S. V. Meshkov, “Theory of activated rate processes: Exact solution of the Kramers problem,” J. Chem. Phys. 85, 1018 (1986).

    Article  ADS  Google Scholar 

  124. A. K. Rajagopal, “Action principle for nonequilibrium statistical dynamics based on the Lindblad density matrix evolution,” Phys. Lett. A 228, 66 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  125. S. Gao, “Dissipative quantum dynamics with a Lindblad functional,” Phys. Rev. Lett. 79, 3101 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  126. L. Diosi, “On high-temperature Markovian equation for quantum Brownian motion,” Europhys. Lett. 22, 1 (1993).

    Article  ADS  Google Scholar 

  127. P. Grange, “Effects of transients on particle emission prior to fission in a transport description of the fission process,” Nucl. Phys. A 428, 37c (1984)

    Article  ADS  Google Scholar 

  128. P. Grange, L. Jun-Qing, H. A. Weidenmuller, “Induced nuclear fission viewed as a diffusion process: Transients,” Phys. Rev. C 27, 2063 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sargsyan.

Additional information

Original Russian Text © V.V. Sargsyan, Z. Kanokov, G.G. Adamian, N.V. Antonenko, 2016, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016, Vol. 47, No. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, V.V., Kanokov, Z., Adamian, G.G. et al. Application of the theory of open quantum systems to nuclear physics problems. Phys. Part. Nuclei 47, 157–205 (2016). https://doi.org/10.1134/S1063779616020064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616020064

Keywords

Navigation