Skip to main content
Log in

From an electron avalanche to the lightning discharge

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The goal of this work is to describe qualitatively the physics of processes which begin with an electron avalanche and finish in a lightning discharge. A streamer model is considered that is based on studies of the recently discovered processes occurring in the prestreamer region. The investigation and analysis of these processes enabled making the conclusion that they are, in essence, the attendant processes, which ensure the electron avalanche-to-streamer transition, and may be interpreted as a manifestation of properties of a double charge layer exposed to the external electric field. The pressing problems of physical processes which form a lightning discharge are considered from the standpoint of new ideas about the mechanism of the streamer formation and growth. Causes of the emergence of coherent super-high-frequency radiation of a leader and the neutron production in a lightning discharge are revealed that have not been explained so far in the theory of gas discharge. Based also on new ideas about the lightning discharge, a simple ball-lightning model, providing answers to almost allquestions formulated from numerous observations on the behavior of ball lightning, is offered, and the need of a new design of lightning protection instead of the traditional rod is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Problems of Atmospheric Electricity (Gidrometeoizdat, Leningrad, 1969) [in Russian].

  2. M. B. Baker and J. G. Dash, “Mechanism of charge transfer between colliding ice particles in thunderstorms,” J. Geophys. Res., 99, 10621–10626 (1994).

    Article  ADS  Google Scholar 

  3. V. I. Ermakov and Yu. I. Stozhkov, Preprint No. 2 FIAN (Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 2004).

    Google Scholar 

  4. A. V. Gurevich and K. P. Zybin, “Runaway breakdown and electric discharges in thunderstorms,” Phys.-Usp., 44 (11), 1119–1140 (2001).

    Article  ADS  Google Scholar 

  5. J. M. Meek and J. D. Craggs, Electrical Breakdown of Gases (Clarendon Press, Oxford, 1953).

    MATH  Google Scholar 

  6. L. B. Loeb, Fundamental Processes of Electrical Discharge in Gases (John Wiley and Sons, New York, 1939).

    Google Scholar 

  7. J. M. Meek and J. D. Craggs, Electrical Breakdown of Gases (Clarendon Press, Oxford, 1953; Inostrannaya Literatura, Moscow, 1960) [in Russian].

    Google Scholar 

  8. H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, Washington, 1964).

    Google Scholar 

  9. E. D. Lozanskii and O. B. Firsov, Theory of the Spark (Atomizdat, Moscow, 1964) [in Russian].

    Google Scholar 

  10. Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991).

    Book  Google Scholar 

  11. E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (CRC Press, Boca Raton, 1998).

    Google Scholar 

  12. E. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection (IOP Publishing, Bristol, Philadelphia, 2000).

    Book  Google Scholar 

  13. A. F. D’yakov, Yu. K. Bobrov, A. V. Sorokin, and Yu. V. Yurgelenas, Fundamentals of Electrical Breakdown in Gases (Mosk. Energ. Inst., Moscow, 1999) [in Russian].

    Google Scholar 

  14. J. R. Dwyer and V. A. Uman “The physics of lightning,” Phys. Rep. 534, 147–241 (2014).

    Article  MathSciNet  ADS  Google Scholar 

  15. K. K. Darrow, Electrical Phenomena in Gases (Williams and Wilkins Co., Baltimore, 1932).

    Google Scholar 

  16. H. Kalmar, A. G. Ketikjan, E. V. Komissarov, V. S. Kurbatov, V. Z. Serdiuk, V. V. Sidorkin, A. V. Voskanjan, and B. Zh. Zalikhanov, “New method for constructing multiwire chambers,” Nucl. Instrum. Meth. A, 307, 279 (1991).

    Article  ADS  Google Scholar 

  17. H. Kalmar, A. Zh. Ketikjan, E. V. Komissarov, V. S. Kurbatov, V. Z. Serdiuk, V. V. Sidorkin, A. D. Volkov, A. V. Voskanjan, and B. Zh. Zalikhanov, “Development of the method of multiwire detectors working in high rate environment,” in Proc. of the 3rd Workshop on Physics at UNK (Protvino, Russia, 1990), p. 31.

    Google Scholar 

  18. B. Zh. Zalikhanov, “Plasma mechanism of a discharge in wire chambers in high gas multiplication mode,” Fiz. Elem. Chastits At. Yadra, 29 (5), 1194–1258 (1998).

    Google Scholar 

  19. B. Zh. Zalikhanov, “Specific features of electron avalanche in high gas multiplication mode,” Phys. Part. Nucl. Lett., 3 (2), 118–130 (2006).

    Article  Google Scholar 

  20. G. D. Alekseev, V. V. Kruglov, and D. M. Khazins, “Self-quenching streamer discharge in a wire chamber,” Phys. Part. Nucl., 13, 293 (1982).

    Google Scholar 

  21. M. Atac, A. V. Tollestrup, and D. Potter, “Self-quenching streamers,” Fermilab Report No. FN-348, 1981.

    Google Scholar 

  22. B. Zh. Zalikhanov, “Double charge layer in high-current electron avalanche,” Phys. Part. Nucl. Lett., 3 (3), 211–221 (2006).

    Article  Google Scholar 

  23. Yu. D. Korolev, and G. A. Mesyats, Physics of Pulsed Breakdown in Gases (URO Press, Ekaterinburg, 1998).

    Google Scholar 

  24. O. A. Omarov, Pulsed Discharges in High-Pressure Gases (Yupiter, Makhachkala, 2001) [in Russian].

    Google Scholar 

  25. O. A. Omarov and A. A. Rukhadze, “On the plasma mechanism of developing the early stages of breakdown in gases,” Tech. Phys., 56 (7), 944–949 (2011).

    Article  Google Scholar 

  26. T. H. Teich, “Emission Gasionisierender Strahlung aus Elektronen Lawinen,” Z. Phys., 199 (4), 378 (1967).

    Article  ADS  Google Scholar 

  27. V. F. Fedorov, Yu. A. Frolov, and P. O. Shishkov, “Millimeter electromagnetic radiation of a lightning return stroke,” Prikl. Mekh. Tekh. Fiz., 42 (3), 9–14 (2001).

    Google Scholar 

  28. Yu. P. Vagin, K. S. Mozgov, T. A. Semenova, and V. F. Fedorov, “Coherent microwave radiation generated by strong atmospheric sources,” Elektromagn. Volny Elektron. Sistemy, No., 3, 81–87 (2011).

    Google Scholar 

  29. A. V. Gurevich, V. P. Antonova, A. P. Chubenko, A. N. Karashtin, G. G. Mitko, M. O. Ptitsyn, V. A. Ryabov, A. L. Shepetov, Yu. V. Shlyugaev, L. I. Vildanova, and K. P. Zybin, “Strong flux of lowenergy neutrons produced by thunderstorms,” Phys. Rev. Lett., 108, 125001 (2012).

    Article  ADS  Google Scholar 

  30. B. M. Kuzhevskii, “Neutron production in lightnings,” Vestn. Mosk, Univ., Ser. 3: Fiz. Astron., No., 5, 14–16 (2004) [In Russian].

    Google Scholar 

  31. L. P. Babich, “Generation of neutrons in giant upward atmospheric discharges,” JETP Lett., 84 (6), 285–288 (2006).

    Article  ADS  Google Scholar 

  32. B. E. Carlson, N. G. Lehtinen, and U. S. Inan, “Neutron production in terrestrial gamma ray flashes,” J. Geophys. Res., 115 A00E19 (2010). doi:10.1029/2009JA014696

    ADS  Google Scholar 

  33. L. P. Babich, E. I. Bochkov, I. M. Kutsik, and A. N. Zalyalov, “On amplifications of photonuclear neutron flux in thunderstorm atmosphere and possibility of detecting them,” JETP Lett., 97 (6), 291–296 (2013).

    Article  ADS  Google Scholar 

  34. http://wwwenwikipediaorg/wiki/Ball_lightning

  35. A. von Engel, Ionized Gases, 2nd ed. (Oxford Univ. Press, Oxford, U.K., 1965).

    Google Scholar 

  36. D. F. Frank-Kamenetskii, Plasma—the Fourth State of Matter (Plenum Press, New York, 1972).

    Book  Google Scholar 

  37. R. Henderson, W. Faszer, R. Openshaw, G. Sheffer, M. Salomon, S. Dew, J. Marans, and P. Wilson, “A high rate proportional chamber,” IEEE Trans. Nucl. Sci., NS–34(1), 528 (1987).

    Article  ADS  Google Scholar 

  38. E. M. Gushchin, E. V. Komissarov, Yu. V. Musienko, A. A. Poblaguev, V. Z. Serdyuk, and B. Zh. Zalikhanov, “Fast beam chambers of the set-up ISTRA-M,” Nucl. Instrum. Meth. A, 351 (2–3), 345–348 (1994).

    Article  ADS  Google Scholar 

  39. Yu. V. Zanevskii, Wire Detectors of Elementary Particles (Atomizdat, Moscow, 1978) [in Russian].

    Google Scholar 

  40. Berkeley Physics Course, Vol. 2: E. M. Purcell, Electricity and Magnetism (McGraw-Hill, New York, 1965).

  41. J. Fischer, A. Hrisoho, V. Radeka, and P. Rehak, “Proportional chambers for very high counting rates based on gas mixtures of CF4 with hydrocarbons,” Nucl. Instrum. Meth. A, 238, 249 (1985).

    Article  ADS  Google Scholar 

  42. B. Zh. Zalikhanov, Preprint No. OIYaI R13-2006-118 (Joint Institute for Nuclear Research, Dubna, 2006).

    Google Scholar 

  43. S. Majewski, G. Charpak, A. Breskin, and G. Mikenberg, “A thin multiwire chamber operating in the high multiplication mode,” Nucl. Instrum. Meth., 217, 265 (1983).

    Article  Google Scholar 

  44. V. I. Bychkov, Candidate’s Dissertation in Mathematics and Physics (Joint Institute for Nuclear Research, Dubna, 2006).

    Google Scholar 

  45. S. P. Strelkov, Introduction to the Theory of Oscillations (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  46. L. G. Christophorou and J. K. Olthoff, “Electron interaction with plasma processing gases: An update for CF4, CHF3, C2F6 and C3F8,” J. Phys. Chem. Ref. Data, 28 (4), 967 (1999).

    Article  ADS  Google Scholar 

  47. M. M. Nudnova and A. Yu. Starikovskii, presented at IV Konferentsiya NOTs CRDF (IV Conference of CRDF REC, MEPhI, Moscow, 2006) ISBN 5-7262-0637.

    Google Scholar 

  48. I. P. Kuzhekin, V. P. Larionov, and E. N. Prokhorov, Lightning and Lightning Protection (Znak, Moscow, 2003) [in Russian].

    Google Scholar 

  49. G. N. Aleksandrov, Lightning and Lightning Protection (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  50. Yu. P. Raizer, Gas Discharge Physics, 3rd ed. (Izdatel’skii Dom Intellekt, Dolgoprudnyi, 2009) [In Russian].

    Google Scholar 

  51. Physics of Microwaves (Inst. Prikl. Fiz. RAN, Nizhni Novgorod, 1999), Vols. 1, 2 [In Russian].

  52. Leonid I. Men’shikov, “Superradiance and related phenomena,” Phys.-Usp., 42 (2), 107 (1999).

    Article  Google Scholar 

  53. V. G. Shpak, M. I. Yalandin, S. A. Shunailov, N. S. Ginzburg, I. V. Zotova, A. S. Sergeev, A. D. R. Phelps, A. W. Cross, and S. M. Wiggins, “A new source of ultrashort microwave pulses based on the effect of superradiation of subnanosecond electron bunches,” Dokl. Phys., 44 (3), 143 (1999).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Zh. Zalikhanov.

Additional information

Original Russian Text © B.Zh. Zalikhanov, 2016, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016, Vol. 47, No. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalikhanov, B.Z. From an electron avalanche to the lightning discharge. Phys. Part. Nuclei 47, 108–133 (2016). https://doi.org/10.1134/S1063779616010056

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616010056

Keywords

Navigation