Skip to main content
Log in

Correlation Fourier diffractometry: 20 Years of experience at the IBR-2 reactor

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The high-resolution Fourier diffractometer (HRFD) was commissioned at the IBR-2 pulsed reactor at FLNP JINR in 1994. The specific feature of the HRFD design is the use of fast Fourier chopper for modulating the primary neutron beam intensity and the correlation method of diffraction data acquisition. This allowed to reach with HRFD extremely high resolution (Δd/d ≈ 0.001) over a wide range of inter-planar spacings at a relatively short flight path between chopper and sample (L = 20 m). Over time, a lot of diffraction experiments on crystalline materials, the main goal of which was to study their atomic and magnetic structures, were performed at HRFD. Successful implementation of the Fourier diffractometry technique at the IBR-2 reactor stimulated the construction of yet another Fourier diffractometer intended for internal mechanical stress studies in bulk materials (FSD, Fourier Stress Diffractometer). In this paper the experience of using this technique at the IBR-2, which is a long-pulse neutron source, is considered, the examples of HRFD studies are given, and possible solutions for existing technical problems of using correlation diffractometry and ways of increasing the intensity and resolution of HRFD are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. Hewat, “Design for a conventional high resolution neutron powder diffractometer,” Nucl. Instrum. Methods 127, 361–370 (1975).

    Article  ADS  Google Scholar 

  2. A. W. Hewat, “D2B, a new high resolution neutron powder diffractometer at ILL Grenoble,” Mater. Sci. Forum 9, 69–79 (1986).

    Article  Google Scholar 

  3. P. Fischer, G. Frey, M. Koch, M. Koennecke, V. Pomjakushin, J. Schefer, R. Thut, N. Schlumpf, R. Buerge, U. Greuter, S. Bondt, and E. Berruyer, “High resolution powder diffractometer HRPT for thermal neutrons at SINQ,” Physica B (Amsterdam) 276278, 146–147 (2000).

    Article  Google Scholar 

  4. W. I. F. David, W. T. A. Harrison, and M. W. Johnson, “High resolution diffraction at ISIS,” Mater. Sci. Forum 9, 89–102 (1986).

    Article  Google Scholar 

  5. http://flnp.jinr.ru/34/.

  6. http://europeanspallationsource.se.

  7. M. Russina, F. Mezei, and G. Kali, “First implementation of novel multiplexing techniques for advanced instruments at pulsed neutron sources,” J. Phys.: Conf. Ser. 340, 012018 (2012).

    ADS  Google Scholar 

  8. K. Sköld, “A mechanical correlation chopper for thermal neutron spectroscopy,” Nucl. Instrum. Methods 63, 114–116 (1968).

    Article  ADS  Google Scholar 

  9. A. M. Balagurov, “High resolution Fourier diffraction at the IBR-2 Reactor,” Neutron News 16, 8–12 (2005).

    Article  Google Scholar 

  10. V. Glezer, “Correlation methods in time-of-flight neutron spectroscopy,” Fiz. Elem. Chastits At. Yadra 4, 1125–1142 (1972).

    Google Scholar 

  11. R. Heinonen, P. Hiismäki, A. Piirto, H. Pöyry, and A. Tiitta, “A time-focusing Fourier chopper TOF diffractometer for large scattering angles,” in Proceedings of the Neutron Diffraction Conference, Petten, 1975, RCN-234, pp.347–359.

  12. J. F. Colwel, P. H. Miller, and W. L. Wittemore, “A new high-efficiency time-of-flight system,” in Neutron Inelastic Scattering. Conf. Proc. (IAEA, Vienna, 1968), p. 429.

    Google Scholar 

  13. J. F. Colwel, S. R. Lehinan, P. H. Miller, and W. L. Wittemore, “Fourier analysis of thermal neutron time-of-flight data: A high efficiency neutron chopping system,” Nucl. Instrum. Methods 76, 135–149 (1969).

    Article  ADS  Google Scholar 

  14. A. C. Nunes, R. Nathans, and B. P. Schoenborn, “A neutron Fourier chopper for single crystal reflectivity measurements: Some general design considerations,” Acta Crystallogr. A, Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 27, 284–291 (1971).

    Article  ADS  Google Scholar 

  15. A. C. Nunes, “The neutron Fourier chopper in protein crystallography,” J. Appl. Crystallogr. 8, 20–28 (1975).

    Article  Google Scholar 

  16. P. Hiismäki, “Inverse time-of-flight method,” in Neutron Inelastic Scattering. Conf. Proc. (IAEA, Grenoble, 1972), p. 803.

    Google Scholar 

  17. H. Pöyry, P. Hiismäki, and A. Virjo, “Principles of reverse neutron time-of-flight spectrometry with Fourier chopper applications,” Nucl. Instrum. Methods 126, 421–433 (1975).

    Article  ADS  Google Scholar 

  18. R. Heinonen, P. Hiismäki, A. Piirto, H. Pöyry, and A. Tiitta, “A time focusing Fourier chopper time-of-flight diffractometer for large scattering angles,” in Proceedings of the Neutron Diffraction Conference, Petten, 1975, RCN-234, pp. 347–359.

  19. P. Hiismäki, V. A. Trounov, O. Antson, V. A. Kudryashev, H. Kukkonen, H. Pöyry, A. F. Shchebetov, A. Tiitta, and V. A. Ulyanov, “Experience of the Fourier TOF neutron techniques for high resolution neutron diffractometry,” in Neutron Scattering in the Nineties. Conf. Proc. (IAEA, Vienna, 1985), pp. 453–459.

    Google Scholar 

  20. J. Schröder, V. A. Kudryashev, J. M. Keuter, H. G. Priesmeyer, J. Larsen, and A. Tiitta, “FSS—a novel RTOF-diffractometer optimized for residual stress investigations,” J. Neutron Res. 2, 129–141 (1994).

    Article  Google Scholar 

  21. V. A. Kudryashev, H. G. Priesmeyer, J. M. Keuter, J. Schröder, and R. Wagner, “On the shape of the diffraction peaks measured by Fourier reverse time-of-flight spectrometry,” Nucl. Instrum. Methods Phys. Res., B 101, 484–492 (1995).

    Article  ADS  Google Scholar 

  22. V. A. Kudryashev, H. G. Priesmeyer, J. M. Keuter, J. Schröder, and R. Wagner, “Phase errors and their influence on the RTOF-Fourier method,” Nucl. Instrum. Methods Phys. Res., B 103, 517–522 (1995).

    Article  ADS  Google Scholar 

  23. I. M. Frank and P. Pacher, “First experience on the high intensity pulsed reactor IBR-2,” Physica B+C (Amsterdam) 120, 37–44 (1983).

    Article  ADS  Google Scholar 

  24. P. Hiismäki, H. Pöyry, and A. Tiitta, “Exploitation of the Fourier chopper in neutron diffractometry at pulsed sources,” J. Appl. Crystallogr. 21, 349–354 (1988).

    Article  Google Scholar 

  25. V. L. Aksenov, A. M. Balagurov, V. G. Simkin, Yu. V. Taran, V. A. Trounov, V. A. Kudrjashev, A. P. Bulkin, V. G. Muratov, P. Hiismaki, A. Tiitta, and O. Antson, “The new Fourier diffractometer at the IBR-2 Reactor: Design and first results,” JINR Commun. E13-92-456 (Dubna, 1992).

    Google Scholar 

  26. A. M. Balagurov, “High precision structural refinement from high resolution Fourier neutron powder diffraction data,” Mater. Sci. Forum 166169, 261–266 (1994).

    Article  Google Scholar 

  27. A. M. Balagurov, P. Fischer, T. Yu. Kaganovich, E. Kaldis, J. Karpinski, V. G. Simkin, and V. A. Trounov, “Precision Fourier neutron diffraction study of the high-temperature superconductor Y(44Ca)Ba2Cu4O8,” JINR Commun. E14-94-415 (Dubna, 1994).

    Google Scholar 

  28. G. D. Bokuchava, A. V. Tamonov, N. R. Shamsutdinov, A. M. Balagurov, and D. M. Levin, “Reverse TOF neutron study of residual stresses in perforator’s striker,” J. Neutron Res. 9, 255–261 (2001).

    Article  Google Scholar 

  29. G. D. Bokuchava, V. L. Aksenov, A. M. Balagurov, E. S. Kuzmin, V. V. Zhuravlev, A. P. Bulkin, V. A. Kudryashev, and V. A. Trounov, “Neutron Fourier diffractometer FSD for internal stress analysis: First results,” Appl. Phys. A 74, S86–S88 (2002).

    Article  ADS  Google Scholar 

  30. P. G. Radaelli, S. Hull, H. J. Bleif, and A. M. Balagurov, “Powder diffraction instruments,” in Performance of a Suite of Generic Instruments on ESS, ESS 115-01-T (2001), pp.41–55.

    Google Scholar 

  31. V. L. Aksenov, A. M. Balagurov, V. G. Simkin, A. P. Bulkin, V. A. Kudrjashev, V. A. Trounov, O. Antson, P. Hiismaki, and A. Tiitta, “Performance of the high resolution Fourier diffractometer at the IBR-2 pulsed reactor,” J. Neutron Res. 5, 181–200 (1997).

    Article  Google Scholar 

  32. A. M. Balagurov and V. A. Kudrjashev, “Correlation Fourier diffractometry for long-pulse neutron sources: A new concept,” in 19th Meeting on Collaboration of Advanced Neutron Sources, ICANS XIX, Grindelwald, Switzerland, 2010.

    Google Scholar 

  33. V. A. Kudryashev, H. G. Priesmeyer, J. M. Keuter, J. Schriider, R. Wagner, and V. A. Trounov, “Optimization of detectors in time-focusing geometry for RTOF neutron diffractometers,” Nucl. Instrum. Methods Phys. Res., B 93, 355–361 (1994).

    Article  ADS  Google Scholar 

  34. V. A. Kudryashev, A. P. Bulkin, V. G. Muratov, V. A. Trounov, V. A. Ulyanov, O. Antson, H. Pöyry, A. Tiitta, P. Hiismäki, A. M. Balagurov, and E. V. Serochkin, “Detection system for high-resolution diffractometers of SFINKS type,” Soobshch. No.1562, LIYaF (Leningrad Inst. of Nuclear Physics, Leningrad, 1989) [in Russian].

    Google Scholar 

  35. E. J. Mittemeijer and U. Welzel, “The’ state of the art’ of the diffraction analysis of crystallite size and lattice strain,” Z. Kristallogr. 223, 552–560 (2008).

    Article  Google Scholar 

  36. V. L. Aksenov and A. M. Balagurov, “Time-of-flight neutron diffractometry,” Usp. Fiz. Nauk 166, 955–986 (1996).

    Article  Google Scholar 

  37. V. B. Zlokazov and V. V. Chernyshev, “MRIA-a program for a full profile analysis of powder multiphase neutron-diffraction time-of-flight (direct and Fourier) spectra,” J. Appl. Crystallogr. 25, 447 (1992).

    Article  Google Scholar 

  38. V. L. Aksenov, A. M. Balagurov, V. V. Sikolenko, V. G. Simkin, V. A. Aleshin, E. V. Antipov, A. A. Gippius, D. A. Mikhajlova, S. N. Putilin, and F. Bouree, “Precision neutron diffraction study of the high-T c superconductor HgBa2CuO4+δ,” Phys. Rev. B: Condens. Matter 55, 3966–3973 (1997).

    Article  ADS  Google Scholar 

  39. A. M. Abakumov, V. L. Aksenov, V. A. Alyoshin, E. V. Antipov, A. M. Balagurov, D. A. Mikhailova, S. N. Putilin, and M. G. Rozova, “Effect of fluorination on the structure and superconducting properties of the Hg-1201 phase,” Phys. Rev. Lett. 80, 385–388 (1998).

    Article  ADS  Google Scholar 

  40. K. A. Lokshin, D. A. Pavlov, S. N. Putilin, E. V. Antipov, D. V. Sheptyakov, and A. M. Balagurov, “Enhancement of T c in Hg-1223 by fluorination,” Phys. Rev. B: Condens. Matter 63, 064511 (2001).

    Article  ADS  Google Scholar 

  41. A. M. Balagurov, V. L. Aksenov, E. V. Antipov, S. N. Putilin, and D. V. Sheptyakov, “Neutron diffraction study of atomic structure of high-T c mercury-based superconductors as a function of anion composition and external pressure,” Fiz. Elem. Chastits At. Yadra 35, 1351–1467 (2004).

    Google Scholar 

  42. A. M. Balagurov, V. Yu. Pomjakushin, V. G. Simkin, and A. A. Zakharov, “Neutron diffraction study of phase separation in La2CuO4 + y single crystals,” Physica C (Amsterdam) 272, 277–284 (1996).

    Article  ADS  Google Scholar 

  43. V. Yu. Pomjakushin, A. A. Zakharov, A. M. Balagurov, F.N. Gygax, A. Schenck, A. Amato, D. Herlach, A. I. Beskrovnyi, V. N. Duginov, Yu. V. Obukhov, A. V. Pole, V. G. Simkin, A. N. Ponomarev, and S. N. Barilo, “Microscopic phase separation in La2CuO4 + y induced by the superconducting transition,” Phys. Rev. B: Condens. Matter 58, 12350–12354 (1998).

    Article  ADS  Google Scholar 

  44. N. A. Babushkina, L. M. Belova, O. Yu. Gorbenko, A. R. Kaul, A. A. Bosak, V. I. Ozhogin, and K. I. Kugel, Nature (London) 391, 159–161 (1998).

    Article  ADS  Google Scholar 

  45. V. L. Aksenov, A. M. Balagurov, and V. Yu. Pomyakushin, “Neutron diffraction analysis of doped manganites,” Usp. Fiz. Nauk 173, 883–887 (2003).

    Article  Google Scholar 

  46. A. M. Balagurov, V. Yu. Pomjakushin, D. V. Sheptyakov, V. L. Aksenov, N. A. Babushkina, L. M. Belova, O. Yu. Gorbenko, and A. R. Kaul, “A-cation size and oxygen isotope substitution effects on (La1 − y Pry)0.7Ca0.3MnO3 structure,” Eur. Phys. J. B 19, 215–223 (2001).

    Article  ADS  Google Scholar 

  47. A. M. Balagurov, I. A. Bobrikov, V. Yu. Pomyakushin, D. V. Sheptyakov, N. A. Babushkina, O. Yu. Gorbenko, M. S. Kartavtseva, and A. R. Kaul, “Effect of isotopic composition and microstructure on the crystalline and magnetic phase states in R0.5Sr0.5MnO3,” J. Exp. Theor. Phys. 106, 528 (2008).

    Article  ADS  Google Scholar 

  48. P. Scardi, M. Ortolani, and M. Leoni, “WPPM: Micro-structural analysis beyond the Rietveld method,” Mater. Sci. Forum 651, 155–171 (2010).

    Article  Google Scholar 

  49. A. M. Balagurov, I. A. Bobrikov, J. Grabis, D. Jakovlevs, A. Kuzmin, M. Maiorov, and N. Mironova-Ulmane, “Neutron scattering study of structural and magnetic size effects in NiO,” IOP Conf. Ser.: Mater. Sci. Eng. 49, 012021 (2013).

    Article  Google Scholar 

  50. I. A. Bobrikov, A. M. Balagurov, Hu Chih-Wei, Lee Chih-Hao, Deleg Sangaa, and D. A. Balagurov, “Structural evolution in LiFePO4-based battery materials: In-situ and ex-situ time-of-flight neutron diffraction study,” J. Power Sources 258, 356–364 (2014).

    Article  ADS  Google Scholar 

  51. G. D. Bokuchava, V. V. Luzin, J. Schreiber, and Yu. V. Taran, “Residual stress investigations in austenitic steel samples with different degree of low cycle fatigue,” Text. Microstruct. 33, 279–289 (1999).

    Article  Google Scholar 

  52. V. L. Aksenov, A. M. Balagurov, G. D. Bokuchava, A. P. Bulkin, V. A. Kudryashev, V. G. Simkin, Yu. V. Taran, V. A. Trounov, N. R. Shamsutdinov, and Yu. Shreiber, “Internal mechanical stress investigations in materials and products on the high-resolution Fourier diffractometer at the IBR-2 reactor,” in Conf. RSNE-97 (Dubna, 1997), Vol. 1, p. 69 [in Russian].

    Google Scholar 

  53. V. A. Kudryashev, V. A. Trounov, and V. G. Mouratov, “Improvement of Fourier method and Fourier diffractometer for internal residual strain measurements,” Physica B (Amsterdam) 234236, 1138–1140 (1997).

    Article  Google Scholar 

  54. E. S. Kuzmin, A. M. Balagurov, G. D. Bokuchava, V. V. Zhuk, V. A. Kudryashev, A. P. Bulkin, and V. A. Trounov, “Detector for the FSD Fourier-diffractometer based on ZnS(Ag)/6LiF scintillation screen and wavelength shifting fiber readout,” J. Neutron Res. 10, 31–41 (2002).

    Article  Google Scholar 

  55. G. D. Bokuchava, A. M. Balagurov, V. V. Sumin, and I. V. Papushkin, “Neutron Fourier diffractometer FSD for residual stress studies in materials and industrial components,” J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4(6), 879–890 (2010).

    Article  Google Scholar 

  56. V. A. Trunov, V. A. Kudryashev, V. A. Ulyanov, A. P. Bulkin, V. G. Muratov, T. K. Korotkova, A. F. Shchebetov, P. Hiismäki, H. Pöyry, A. Tiitta, O. Antson, H. Mutka, H. Kukkonen, and K. Tilli, “High resolution diffractometer mini-SFINKS,” Soobshch. No.1277, LIYaF (Leningrad Inst. of Nuclear Physics, Leningrad, 1987) [in Russian].

    Google Scholar 

  57. V. A. Drozdov, V. A. Butenko, and V. I. Prihodko, “A multi-DSP system for the neutron high resolution Fourier diftractometer,” IEEE Trans. Nucl. Sci. 45, 1928 (1998).

    Article  ADS  Google Scholar 

  58. F. V. Levchanovskiy and S. M. Murashkevich, “The data acquisition system for neutron spectrometry—a new approach and implementation,” in Proc. of XXIV Intern. Symp. on Nuclear Electronics & Computing (NEC’2013), E10-11-136 (Dubna, 2013), pp. 176–179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Bobrikov.

Additional information

Original Russian Text © A.M. Balagurov, I.A. Bobrikov, G.D. Bokuchava, V.V. Zhuravlev, V.G. Simkin, 2015, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2015, Vol. 46, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balagurov, A.M., Bobrikov, I.A., Bokuchava, G.D. et al. Correlation Fourier diffractometry: 20 Years of experience at the IBR-2 reactor. Phys. Part. Nuclei 46, 249–276 (2015). https://doi.org/10.1134/S1063779615030041

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779615030041

Keywords

Navigation