Skip to main content
Log in

Spontaneous magnetization of a vacuum in the hot Universe and intergalactic magnetic fields

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We review the spontaneous magnetization of the vacuum of non-Abelian gauge fields at high temperature. The standard model of particles is investigated as a particular example. By using both analytic methods of quantum field theory and gauge field theory on a lattice, we determine the Abelian (chromo)magnetic fields in the restored phase of the model at high temperatures TT ew . The fields are stable and temperature dependent, B = B(T). We investigate the mechanisms of the field stabilization in detail. The screening parameters for electric and magnetic fields—the Debye, m D (B, T), and magnetic, m magn (B, T), masses—are calculated. It is shown that, in the field presence, the former one is smaller than at zero field. The magnetic mass of the (chromo)magnetic fields is determined to be zero, as for usual U(1) magnetic field. We also show that the vacuum magnetization stops at temperatures below the electroweak phase transition temperature, TT ew , when a scalar condensate creates. These properties make reasonable a possibility that the intergalactic magnetic fields observed recently were spontaneously generated in the hot Universe at the reheating epoch due to vacuum polarization of non-Abelian gauge fields. We present a procedure for estimating the field strengths B(T) at different temperatures. In particular, the value of B(T ew ) ∼ 1014 G, at T ew is estimated with taking into consideration the observed intergalactic magnetic field B 0 ∼ 10−15 G. The magnetic field scale is also estimated. Some model dependent peculiarities of the phenomena studied are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. D’Elia, S. Mukherjee, and F. Sanfilippo, “QCD phase transition in a strong magnetic background,” Phys. Rev., D 82, 051501, (2010).

    Article  ADS  Google Scholar 

  2. D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, “The effects of topological charge change in heavy ion collisions: “Event by event P and CP violation,” Nucl. Phys., A 803, 227–253 (2008).

    Article  ADS  Google Scholar 

  3. V. Skokov, A. Y. Illarionov, and V. Toneev, “Estimate of the magnetic field strength in heavy-ion collisions,” Int. J. Mod. Phys., A 24, 5925–5932 (2009).

    Article  ADS  Google Scholar 

  4. R. Gatto and M. Ruggieri, “Deconfinement and chiral symmetry restoration in a strong magnetic background,” Phys. Rev., D 83, 034016, (2011).

    Article  ADS  Google Scholar 

  5. Y. Aoki et al., “The order of the quantum chromody-namics transition predicted by the standard model of particle physics,” Nature 443, 675–678 (2006).

    Article  ADS  Google Scholar 

  6. M. Giovannini, “The symmetries of inflationary magnetogenesis and the plasma initial conditions,” Phys. Rev., D 86, 103009, 35 (2012).

    Article  ADS  Google Scholar 

  7. A. De Simone et al., “Magnetic fields at first order phase transition: a threat to electroweak baryogenesis,” JCAP 1110, 030, (2011).

    Article  Google Scholar 

  8. L. M. Widrow et al., “The first magnetic fields,” Space Sci. Rev. 166, 37–70 (2012).

    Article  ADS  Google Scholar 

  9. M. Giovannini, “Non-topological gravitating defects in five-dimensional anti-de Sitter space,” Class. Quant. Grav. 23, L73, (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. S.’ i. Ando and A. Kusenko, “Evidence for gamma-ray halos around active galactic nuclei and the first measurement of intergalactic magnetic fields,” Astrophys. J. 722, L39, (2010).

    Article  ADS  Google Scholar 

  11. A. Neronov and I. Vovk, “Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars,” Science 328, 73–75 (2010).

    Article  ADS  Google Scholar 

  12. W. Essey, Sh. Ando, and A. Kusenko, “Determination of intergalactic magnetic fields from gamma ray data,” Astropart. Phys. 35, 135–139 (2011).

    Article  ADS  Google Scholar 

  13. D. Grasso and H. R. Rubinstein, “Magnetic fields in the early Universe,” Phys. Rept. 348, 163–266 (2001).

    Article  ADS  Google Scholar 

  14. M. Giovannini, “The magnetized Universe,” Int. J. Mod. Phys., D 13, 391–502 (2004).

    Article  ADS  MATH  Google Scholar 

  15. A. Kandus, K. E. Kunze, and C. G. Tsagas, “Primordial magnetogenesis,” Phys. Rept. 505, 1–58 (2011).

    Article  ADS  Google Scholar 

  16. M. Giovannini and M. E. Shaposhnikov, “Primordial magnetic fields from inflation?,” Phys. Rev., D 62, 103512, (2000).

    Article  ADS  Google Scholar 

  17. A. D. Dolgov, “Light millicharged particles and large scale cosmic magnetic fields,” 2014, p. 6; arXiv:1404.5820[astro-ph.CO].

    Google Scholar 

  18. R. Durrer and A. Neronov, “Cosmological magnetic fields: their generation, evolution and observation,” Astron. Astrophys. Rev. 21, 62, (2013).

    Article  ADS  Google Scholar 

  19. Y. Shtanov, J. H. Traschen, and R. H. Brandenberger, “Universe reheating after inflation,” Phys. Rev., D 51, 5438–5455 (1995).

    Article  ADS  Google Scholar 

  20. D. S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory (World Scientific, Hackensack, USA, 2011), p. 489.

    Book  Google Scholar 

  21. A. O. Starinets, A. S. Vshivtsev, and V. Ch. Zhukovsky, “Color ferromagnetic state in SU(2) gauge theory at finite temperature,” Phys. Lett., B 322, 403–412 (1994).

    Article  ADS  Google Scholar 

  22. K. Enqvist and P. Olesen, “Ferromagnetic vacuum and galactic magnetic fields,” Phys. Lett., B 329, 195–198 (1994).

    Article  ADS  Google Scholar 

  23. V. V. Skalozub, “Effective coupling constants in gauge theories at high temperature,” Int. J. Mod. Phys., A 11, 5643–5657 (1996).

    Article  ADS  Google Scholar 

  24. V. Skalozub and M. Bordag, “Once more on a colour ferromagnetic vacuum state at finite temperature,” Nucl. Phys., B 576, 430–444 (2000).

    Article  ADS  Google Scholar 

  25. V. I. Demchik and V. V. Skalozub, “On the spontaneous creation of chromomagnetic fields at high temperature,” Phys. Atom. Nucl. 71, 180–186 (2008).

    Article  ADS  Google Scholar 

  26. V. Demchik and V. Skalozub, “Spontaneous creation of chromomagnetic field and A(0)-condensate at high temperature on a lattice,” J. Phys., A 41, 164051, (2008).

    Article  ADS  MathSciNet  Google Scholar 

  27. G. K. Savvidy, “Infrared instability of the vacuum state of gauge theories and asymptotic freedom,” Phys. Lett., B 71, 133–134, (1977).

    Article  ADS  Google Scholar 

  28. D. Ebert, V. Ch. Zhukovsky, and A. S. Vshivtsev, “Thermodynamic potential with condensate fields in an SU(2) model of QCD,” Int. J. Mod. Phys., A 13, 1723–1742 (1998).

    Article  ADS  Google Scholar 

  29. M. Bordag and V. Skalozub, “Neutral gluon polarization tensor in color magnetic background at finite temperature,” Phys. Rev., D 75, 125003, (2007).

    Article  ADS  Google Scholar 

  30. S. Antropov et al., “Long range chromomagnetic fields at high temperature,” Int. J. Mod. Phys., A 26, 4831–4843 (2011).

    Article  ADS  MATH  Google Scholar 

  31. V. Skalozub and V. Demchik, “Electroweak phase transition in strong magnetic fields in the Standard Model of elementary particles,” 1999, p. 51; arXiv: hep-th/9912071.

    Google Scholar 

  32. K. Ghoroku, “Structure of the effective potential under A constant magnetic field for SU(2) Yang-Mills theory,” Prog. Theor. Phys., 68, 1340, (1982).

    Article  ADS  Google Scholar 

  33. L. Dolan and R. Jackiw, “Symmetry behavior at finite temperature,” Phys. Rev., D 9, 3320–3341 (1974).

    Article  ADS  Google Scholar 

  34. A. D. Linde, “Particle physics and inflationary cosmology,” Contemp. Concepts Phys. 5, 1–362 (1990).

    Google Scholar 

  35. M. Bordag and V. Skalozub, “Polarization tensor of charged gluons in color magnetic background field at finite temperature,” Phys. Rev., D 77, 105013, (2008).

    Article  ADS  Google Scholar 

  36. M. E. Carrington, “The effective potential at finite temperature in the Standard Model,” Phys. Rev., D 45, 2933–2944 (1992).

    Article  ADS  Google Scholar 

  37. V. I. Demchik and V. V. Skalozub, “The spontaneous generation of magnetic fields at high temperature in a supersymmetric theory,” Eur. Phys. J., C 27, 601–607 (2003).

    Article  ADS  MATH  Google Scholar 

  38. P. N. Meisinger and M. C. Ogilvie, “The finite temperature SU(2) Savvidy model with a nontrivial Polyakov loop,” Phys. Rev., D 66, 105006, (2002).

    Article  ADS  Google Scholar 

  39. O. K. Kalashnikov, “QCD at finite temperature,” Fortsch. Phys., 32, 525, (1984).

    Article  ADS  Google Scholar 

  40. N. P. Landsman, C. G. van Weert, “Real and imaginary time field theory at finite temperature and density,” Phys. Rept., 145, 141, (1987).

    Article  ADS  Google Scholar 

  41. M. Bordag et al., “The Green function of neutral gluons in color magnetic background field at finite temperature,” J. Phys., A 41, 164045, (2008).

    Article  ADS  MathSciNet  Google Scholar 

  42. J. Ambjorn and P. Olesen, “On electroweak magnetism,” Nucl. Phys., B, 315, 606, (1989).

    Article  ADS  Google Scholar 

  43. J. Ambjorn and P. Olesen, “A condensate solution of the electroweak theory which interpolates between the Broken and the symmetric phase,” Nucl. Phys., B, 330, 193–204, (1990).

    Article  ADS  Google Scholar 

  44. J. S. Schwinger, “Classical radiation of accelerated electrons, ii: a quantum viewpoint,” Phys. Rev., D 7, 1696–1701 (1973).

    Article  ADS  Google Scholar 

  45. M. Bordag and V. Skalozub, “Gluon polarization tensor in color magnetic background,” Eur. Phys. J., C 45, 159–178 (2006).

    Article  ADS  Google Scholar 

  46. U. Kraemmer and A. Rebhan, “Advances in perturbative thermal field theory,” Rept. Prog. Phys., 67 351, (2004).

    Article  ADS  MathSciNet  Google Scholar 

  47. Y. Hidaka and R. D. Pisarski, “Hard thermal loops, to quadratic order, in the background of a spatial’ t Hooft loop,” Phys. Rev., D 80, 036004, (2009).

    Article  ADS  Google Scholar 

  48. E. Braaten and R. D. Pisarski, “Soft amplitudes in hot gauge theories: a general analysis,” Nucl. Phys., B, 337 569, (1990).

    Article  ADS  Google Scholar 

  49. M. Bordag and V. Skalozub, “Groundstate projection of the charged SU(2) polarization tensor in a chromomagnetic background field,” Phys. Rev., D 85, 065018, (2012).

    Article  ADS  Google Scholar 

  50. M. D’Elia, “Lattice QCD simulations in external background fields,” Lect. Notes Phys. 871, 181–208 (2013).

    Article  ADS  Google Scholar 

  51. L. Campanelli, P. Cea, and L. Tedesco, “Cosmic microwave background quadrupole and ellipsoidal Universe,” Phys. Rev., D 76, 063007, (2007).

    Article  ADS  Google Scholar 

  52. P. Cea, L. Cosmai, and M. D’Elia, “QCD dynamics in a constant chromomagnetic field,” JHEP 0712, 097, (2007).

    Article  ADS  Google Scholar 

  53. G. S. Bali et al., “The QCD phase diagram for external magnetic fields,” JHEP 1202, 044, (2012).

    Article  ADS  Google Scholar 

  54. G. S. Bali et al., “Magnetic susceptibility of QCD at zero and at finite temperature from the lattice,” Phys. Rev., D 86, 094512, (2012), arXiv:1209.6015 [hep-lat].

    Article  ADS  Google Scholar 

  55. V. Demchik and V. Skalozub, “The spontaneous generation of magnetic fields at high temperature in SU(2)-gluodynamics on a lattice,” 2006, p. 9; arXiv: hep-lat/0601035.

    Google Scholar 

  56. T. A. DeGrand and D. Toussaint, “The behavior of nonabelian magnetic fields at high temperature,” Phys. Rev., D 25, 526, (1982).

    Article  ADS  Google Scholar 

  57. M. Creutz, “Overrelaxation and Monte Carlo simulation,” Phys. Rev., D 36, 515, (1987).

    Article  ADS  MathSciNet  Google Scholar 

  58. V. Demchik and A. Strelchenko, “Monte Carlo simulations on Graphics Processing Units,” 2009, p. 15; arXiv:0903.3053 [hep-lat].

    Google Scholar 

  59. V. Demchik, “Pseudo-random number generators for Monte Carlo simulations on Graphics Processing Units,” Comput. Phys. Commun. 182, 692–705 (2011).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. R. Banerjee and K. Jedamzik, “The evolution of cosmic magnetic fields: from the very early universe, to recombination, to the present,” Phys. Rev., D 70, 123003, (2004).

    Article  ADS  Google Scholar 

  61. T. Kahniashvili, A. G. Tevzadze, and B. Ratra, “Phase transition generated cosmological magnetic field at large scales,” Astrophys. J. 726, 78, (2011).

    Article  ADS  Google Scholar 

  62. M. D. Pollock, “Magnetic fields and vacuum polarization at the Planck era,” Int. J. Mod. Phys., D 12, 1289–1298 (2003).

    Article  ADS  Google Scholar 

  63. V. I. Demchik and V. V. Skalozub, “The spontaneous generation of magnetic and chromomagnetic fields at high temperature in the standard model,” Eur. Phys. J., C 25, 291–296 (2002).

    Article  ADS  Google Scholar 

  64. L. M. Widrow, “Origin of galactic and extragalactic magnetic fields,” Rev. Mod. Phys. 74, 775–823 (2002).

    Article  ADS  Google Scholar 

  65. E. Elizalde and V. Skalozub, “Spontaneous magnetization of the vacuum and the strength of the magnetic field in the hot Universe,” Eur. Phys. J., C 72, 1968, (2012).

    Article  ADS  Google Scholar 

  66. R. P. Feynman, “The qualitative behavior of Yang-Mills theory in (2+1)-dimensions,” Nucl. Phys., B 188, 479, (1981).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  67. T. Vachaspati, “Magnetic fields from cosmological phase transitions,” Phys. Lett., B 265, 258–261 (1991).

    Article  ADS  Google Scholar 

  68. K. Subramanian and J. D. Barrow, “Magnetohydrodynamics in the early Universe and the damping of noninear Alfven waves,” Phys. Rev., D 58, 083502, (1998).

    Article  ADS  Google Scholar 

  69. C. J. Hogan, “Magnetohydrodynamic effects of a first-order cosmological phase transition,” Phys. Rev. Lett. 51, 1488–1491 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Demchik.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demchik, V., Skalozub, V. Spontaneous magnetization of a vacuum in the hot Universe and intergalactic magnetic fields. Phys. Part. Nuclei 46, 1–23 (2015). https://doi.org/10.1134/S1063779615010037

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779615010037

Keywords

Navigation