Skip to main content
Log in

Detection of highly ionizing particles: Nonlinear near-surface phenomena in silicon radiation detectors

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

As far as the detection system is concerned, experimens on synthesis and study of the properties of superheavy nuclei is one of the most difficult tasks. In fact, these experiments can be considered extreme in many senses:

  • —extremely low (fractions of a picobarn-picobarns) formation cross sections of the products under investigation

  • —extremely high heavy ion beam intensities for example, ∼1.1–1.5 pμA1 48Ca

  • —high radioactivity of actinide targets, which are used in the experiments aimed at the synthesis of super-heavy nuclei

  • —very long duration of the experiment (as long as a year)

  • —extremely low yield of the products under investigation (sometimes less than 1 per month)

  • —very high sensitivity of the detection system

  • —radical suppression of the background products (method of “active correlations”).

The two last points are the subject of the present paper, as well as the subject of two of my reviews published before. It is evident that without knowledge of the nature of the internal processes in semiconductor detectors it is virtually impossible to provide clear detection of ultra rare signals.

In the present paper, the author reports on the investigation of near-surface phenomena in silicon radiation detectors, first of all bearing in mind the theoretical-methodological aspect of these phenomena. Non-equilibrium electron-hole recombination, pulse height defect formation, charge multiplication, and formation of “hot” electron system, are considered. With just these phenomena one can observe nonlinearity of energy-charge-amplitude conversion for heavy ion (recoil nucleus) registered by a silicon detector.

Practical applications are also considered. One of them is a deeply modified method of “active correlations”. Projection of applying the method in the experiments with the modernized cyclotron (DC-280 FLNR project) is projected as well as possible applications in the heavy-ion-induced complete fusion nuclear reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Hyde, I. Perlman, and G. Seaborg, The Transuranium Elements. Vyp.1,, Ed. by G. N. Flerov (Atomizdat, Moscow, 1967) [in Russian].

    Google Scholar 

  2. K. Subotic, et al., Nucl. Instrum. Meth. Phys. Res. A 481, 71 (2002).

    Article  ADS  Google Scholar 

  3. G. G. Gulbekyan, et al., FLNR, JINR Sci. Report 1991–1992 (JINR, Dubna, 1992).

    Google Scholar 

  4. Yu. S. Tsyganov, Fiz. Elem. Chastits At. Yadra 42 1535–1590 (2011) [Phys. Part. Nucl. 42 812 (2011)].

    Google Scholar 

  5. V. G. Subbotin, et al., Acta Phys. Pol. B, No. 34, 2159.

  6. Yu. S. Tsyganov, Appl. Radiat. Isotopes 48(9), 1211 (1997).

    Article  Google Scholar 

  7. Yu. S. Tsyganov, Pis’ma Fiz. Elem. Chastits At. Yadra 8(1), 63 (2011).

    Google Scholar 

  8. Yu. S. Tsyganov, et al., Nucl. Instrum. Methods Phys. Res. A 513, 413 (2003).

    Article  ADS  Google Scholar 

  9. Yu. Tsyganov, J. Phys. G: Nucl. Part. Phys 25, 937 (1999).

    Article  ADS  Google Scholar 

  10. Yu. S. Tsyganov, Nucl. Instrum. Methods Phys. Res. A 582/2, 696 (2007).

    Article  ADS  Google Scholar 

  11. Yu. S. Tsyganov, et al., Nucl. Instrum. Methods Phys. Res. A 477, 406 (2002).

    Article  ADS  Google Scholar 

  12. Yu. S. Tsyganov, et al., Nucl. Instrum. Methods Phys. Res. A 392, 197 (1997).

    Article  ADS  Google Scholar 

  13. Yu. S. Tsyganov, Fiz. Elem. Chastits At. Yadra 40(6), 1563 (2009) [Phys. Part. Nucl. 40 822 (2009)].

    Google Scholar 

  14. Yu. S. Tsyganov, et al., Nucl. Instrum. Methods Phys. Res. A 525, 213 (2004).

    Article  ADS  Google Scholar 

  15. Publ. NRC, 871 (Washington, DC, 1961).

  16. E. Weissenberger, P. Geltenbort, A. Oed, et al., “Energy Calibration of Surface Barrier Detectors for Fission Fragments,” Nucl. Instrum. Methods Phys. Res. A 248, 506–515 (1986).

    Article  ADS  Google Scholar 

  17. H. Shmitt, Wand, Pleasanton F. “Evaluation of Semiconductor Detectors for Fission Fragment Energy Measurements,” Nucl. Instrum. Methods Phys. Res. 40(2), 204–208 (1966).

    Article  ADS  Google Scholar 

  18. J. Golard and J. Gal, “Calibration of Solid State p-n Detectors with Alpha and High-Energy Particles,” Nucl. Instrum. Methods Phys. Res. 16(2), 195–198 (1962).

    ADS  Google Scholar 

  19. H. C. Britt and N. E. Wegner, “Response of Semiconductor Detectors Fission Fragments,” Rev. Sci. Instrum. 34(3), 274–276 (1963).

    Article  ADS  Google Scholar 

  20. S. Shirato, “Pulse Height Defect in Semiconductor Detectors for Fission Fragments,” Jpn. J. Appl. Phys. 3(6), 326–334 (1964).

    Article  ADS  Google Scholar 

  21. Yu. S. Tsyganov and A. N. Polyakov, JINR R792-222.

  22. G. L. Miller and W. M. Gibson, “Charge Collection in Semiconductor Radiation Detectors,” Nucl. Electr. (IAEA, Vienna, 1982), Vol. 1.

    Google Scholar 

  23. V. K. Eremin, N. B. Strokan, and N. I. Tisnek, “Charge Losses in Semiconductor Detectors in the Case of Dense Tracks,” Fiz. Tekh. Poluprovodn. (S.-Peterburg) 10(1), 58–62 (1976).

    Google Scholar 

  24. E. C. Finch, G. Gonenwein, P. Geltenbort, et al., “The Application of Empirical Calibration Procedures for Heavy Ion Surface Barrier Detectors to Pulse-Height Defect Mass Dependence Data,” Nucl. Instrum. Methods Phys. Res. 228(2,3), 402–405 (1985).

    ADS  Google Scholar 

  25. W. Seibt, K. E. Sundstroem, and P. A. Tove, “Charge Collection in Silicon Detectors for Strongly Ionized Particles,” Nucl. Instrum. Methods Phys. Res. 113(3), 317–324 (1973).

    Article  Google Scholar 

  26. A. H. Krulish and R. C. Axtman, “Transient Response of Surface Barrier Detectors as a Function of Fission Fragment Energy,” IEEE Trans. Nucl. Sci. NS-14 (4), 58–63(1967).

    Google Scholar 

  27. R. N. Williams and E. M. Lawson, “The Plasma Effect in Silicon Semiconductor Radiation Detector,” Nucl. Instrum. Methods Phys. Res. 120(2), 261–268 (1974).

    Article  ADS  Google Scholar 

  28. M. Moszynski and B. Bengston, “Plasma Delay and Plasma Time Jitter in Subnanosecond Timing with a Surface Barrier Detector,” Nucl. Instrum. Methods Phys. Res. 91(1), 73–77 (1971).

    Article  ADS  Google Scholar 

  29. E. C. Finch, A. A. Cafolla, and A. Asghar, “The Plasma Decay Time in Semiconductor Detectors for Energetic Heavy Ions,” Nucl. Instrum. Methods Phys. Res. 198(2–3), 557–565 (1982).

    ADS  Google Scholar 

  30. J. B. Milton, J. E. Stephenson, R. P. Smitt, et al., “A New Method for Calibrating the Pulse Height Defect in Solid State Detectors,” Nucl. Instrum. Methods Phys. Res. 157(2), 325–331 (1978).

    Article  Google Scholar 

  31. V. K. Eremin, I. N. Il’yashenko, N. B. Strokan, and B. Shmidt, “Recombination of Nonequilibrium Carriers in Heavy Ion Tracks in Si,” Fiz. Tekh. Poluprovodn. (S.-Peterburg) 29(1), 79–91 (1995) [in Russian].

    Google Scholar 

  32. T. Kitahara, H. Geissel, Y. Laihter, and P. Ambruster, “The Pulse Height Defect for Heavy Ions in Surface-Barrier Detectors,” Nucl. Instrum. Methods Phys. Res. 196(1), 153–155 (1982).

    Article  Google Scholar 

  33. H. Kobayashi, A. Nakamoto, and M. Hosoe, “Energy Dependence of Pulse Height Defect with Fission Fragments in a Silicon Surface-Barrier Detector,” Nucl. Instrum. Methods Phys. Res. 34(2), 222–224 (1965).

    ADS  Google Scholar 

  34. A. H. Krulish and R. C. Axtman, “Energy Dependence of the Pulse Height Defect with Silicon Particle Detectors,” Nucl. Instrum. Methods Phys. Res. 55(2), 238–248 (1967).

    ADS  Google Scholar 

  35. M. D. Brown, “The Response of a Silicon Surface-Barrier Detector to Bromine, Iodine and Uranium Ions,” Nucl. Instrum. Methods Phys. Res. 106(1), 141–145 (1973).

    Article  ADS  Google Scholar 

  36. T. Kitahara, H. Geissel, Y. Laihter, and P. Ambruster, “The Pulse Height Defect for Heavy Ions in Surface-Barrier Detectors,” Nucl. Instrum. Methods Phys. Res. 196(1), 153–155 (1982).

    Article  Google Scholar 

  37. M. Ogihara, Y. Nagasima, W. Galster, et al., “Systematic Measurement of Pulse Height Defect for Heavy Ions in Silicon Surface-Barrier Detectors,” Nucl. Instrum. Methods Phys. Res. A 251(2), 313–320 (1986).

    Article  ADS  Google Scholar 

  38. H. Henchel, A. Kohule, H. Hipp, and G. Gonenwein, “Absolute Measurements of Velocities, Masses and Energies of Fission Fragments from Californium-252 (SF),” Nucl. Instrum. Methods Phys. Res. 190, 125–134 (1981).

    Article  Google Scholar 

  39. K. Paasch, H. Krause, and W. Scobel, “Fission Fragments Spectroscopy with Large Surface-Barrier Detectors,” Nucl. Instrum. Methods Phys. Res. 221(3), 558–563 (1984).

    Article  Google Scholar 

  40. E. C. Finch, G. Gonenwein, P. Geltenbort, et al., “The Application of Empirical Calibration Procedures for Heavy Ion Surface Barrier Detectors to Pulse-Height Defect Mass Dependence Data,” Nucl. Instrum. Methods Phys. Res. 228(2,3), 402–405 (1985).

    ADS  Google Scholar 

  41. V. F. Kushniruk, “Recombination Charge Loss in Detection of Highly Ionizing Particles,” Soobshch. OIYaI 13-11889 (Dubna, 1978) [in Russian].

  42. I. Kanno, “Recombination Effect as Component of Residual Defect in Silicon Surface Barrier Detector,” J. of Nucl. Sci. Technology 29(7), 690–694 (1992).

    Article  MathSciNet  Google Scholar 

  43. The Role of the Surface [in Russian].

  44. V. F. Kushniruk, “On Charge Losses in Semiconductor Detectors in Registration of Highly Ionizing Particles,” Soobshch. OIYaI R13-11933 (Dubna, 1978) [in Russian].

  45. V. F. Kushniruk and Yu. P. Kharitonov, “Investigation of Surface-Barrier Detectors with Xenon Ion Beam,” Prib. Tekh. Eksp., No. 4, 76–79 (1977).

  46. T. Karcher and N. Wotherspoon, “Response of Silicon Surface Barrier Detectors to Heavy Ions,” Nucl. Instrum. Methods Phys. Res. 93(3), 519–523 (1971).

    Article  ADS  Google Scholar 

  47. J. J. Grob, A. Grob, A. Pape, and P. Siffert, “Energy Loss of Heavy Ions in Nuclear Collisions in Silicon,” Phys. Rev. B: 11(9), 3273–3279 (1975).

    Article  ADS  Google Scholar 

  48. A. Grob, J. J. Grob, and P. Siffert, “Energy Loss and Straggling of Heavy Ions by Nuclear Interactions in Silicon,” Nucl. Instrum. Methods Phys. Res. 132(1), 273–279.

  49. J. J. Grob, “Energie Déposèe par les Ions Iourds en Interactions Nucléaires dans le Silicium,” These pour obtenir le grade de docteur es-scienses physiques. De l’universite Louis Pasteur de Strasbourg. N d’ordre, 1197, CRN/CPR79-17, 1979.

  50. J. H. Aitken and W. R. Dixon, “The Ge73(N,Alpha)Zn70 Reaction at 14 MeV Observed in a Lithium Drifted Germanium Detector,” Nucl. Phys. A. 67(2), 395–400 (1965).

    Article  Google Scholar 

  51. F. M. Ipavich, R. A. Lindgren, B. A. Lamburd, and G. Gloeckler, “Measurements of Pulse-Height Defect in Au-Si Detectors for H, He, C, N, O, Ne, Ar, Kr from 2 to 400 keV/Nucleon,” Nucl. Instrum. Methods Phys. Res. 154(2), 291–294 (1978).

    Article  ADS  Google Scholar 

  52. N. B. Strokan, “Investigation of the Characteristics Defining the Energy Resolution in Silicon n-p Counters of Nuclear Particles,” Prib. Tekh. Eksp., No. 1, 91–96 (1964).

  53. E. M. Verbitskaya, V. K. Eremin, A. M. Malyarenko, et al., “Charge Transfer in the Structures of Silicon Detectors with Built-in Field,” Fiz. Tekh. Poluprovodn. (S.-Peterburg) 21(8), 1394–1399 (1987).

    Google Scholar 

  54. E. Verbitskaya, V. Eremin, N. Strokan, J. Kemmer, B. Shmidt, J. von Borany, “Physical Aspects of Precise Spectrometry of Alpha-Particles with Silicon pn-Junction Detectors,” Nucl. Instr. Meth. B 84, 51–61 (1994).

    Article  ADS  Google Scholar 

  55. B. D. Wilkins, M. J. Fluss, S. B. Kaufman, et al., “Pulse-Height Defect for Heavy Ions in a Silicon Surface-Barrier Detector,” Nucl. Instrum. Methods Phys. Res. 92(3), 381–391 (1971).

    Article  ADS  Google Scholar 

  56. E. C. Finch, M. Asghar, and M. Forte, “Plasma and Recombination Effects in the Fission Fragment Pulse Height Defect in a Surface-Barrier Detector,” Nucl. Instrum. Methods Phys. Res. 163(2–3), 467–477 (1979).

    ADS  Google Scholar 

  57. E. C. Finch, A. A. Cafolla, and A. Asghar, “The Plasma Decay Time in Semiconductor Detectors for Energetic Heavy Ions,” Nucl. Instrum. Methods Phys. Res. 198(2–3), 557–565 (1982).

    ADS  Google Scholar 

  58. Yu. S. Tsyganov and A. N. Polyakov, JINR-R7-93-142.

  59. Yu. S. Tsyganov, JINR-R7-91-565.

  60. Yu. S. Tsyganov and A. N. Polyakov, “An Approximate Formula for the Angular Dependence of the Residual Defect in Silicon Radiation Detector,” Nucl. Instrum. Methods Phys. Res. A 363, 611–613 (1995).

    Article  ADS  Google Scholar 

  61. A. V. Sachenko and O. V. Snitko, Photoeffects in Near-Surface Layers of Semiconductros (Naukova Dumka, Kiev, 1984) [in Russian].

    Google Scholar 

  62. V. F. Kushniruk, Yu. P. Kharitonov, and Yu. S. Tsyganov, “A New Approach to the Recombination Component of Pulse-Height Defect,” FLNR Sci. Report E7-91-75 (Dubna, 1991), pp.195–196.

  63. V. F. Kushniruk and Yu. S. Tsyganov, “A Note on Collected-Charge Fluctuations in Silicon Surface Barrier Detectors at Heavy Ion Registration,” Int. J. Appl. Rad., Isotopes xxx (1997).

  64. E. C. Finch and A. L. Rodgers, “Measurements of the Pulse Height Defect and Its Mass Dependence for Heavy-Ion Silicon Detectors,” Nucl. Instrum. Methods Phys. Res. 113(1), 29–40 (1973).

    Article  Google Scholar 

  65. V. F. Kushniruk and Yu. S. Tsyganov, Prib. Tekh. Eksp., No. 3, 30–33 (1998) [in Russian].

  66. E. Konechny and K. Hetwer, “Response of Semiconductor Surface Barrier Detectors to Fission Fragments,” Nucl. Instrum. Methods Phys. Res. 36(1), 61–72 (1965).

    ADS  Google Scholar 

  67. Kushniruk V.F., Preprint OIYaI R13-96-36 (Dubna, 1996) [in Russian].

  68. A. N. Kuznetsov and V. G. Subbotin, Soobshch. OIYaI 13-83-67 (Dubna, 1983) [in Russian].

  69. V. E. Zhuchko and Yu. S. Tsyganov, “Measurement Program Module for Spectrometry of Nuclear Reactions Products,” Soobshch. OIYaI R7-89-565 (Dubna, 1989) [in Russian].

  70. B. Gikal, G. Gulbekian, V. Kutner, A. Morduev, R. Oganessian, A. Tikhomirov, “Operation and Development of U-400 Cyclotron in 1993, 1994,” JINR Sci. Report E7-95-227 (Dubna, 1995).

  71. Yu. S. Tsyganov, “Parameter of Equilibrium Charge States Distribution Width for Calculation of Heavy Recoil Spectra,” Nucl. Instrum. Methods A 378, 356–359 (1996).

    Article  ADS  Google Scholar 

  72. A. A. Aleksandrov, V. F. Kushniruk, and Yu. V. Pyatkov, “Amplitude Characteristics of Semiconductor Detectors of Heavy Ions,” in Methods of Experimental Nuclear Physics in Studies of Fission Processes and Products (Energoatomizdat, Moscow, 1983), pp. 33–38 [in Russian].

    Google Scholar 

  73. E. L. Haines and A. B. Whitehead, “Pulse Height Defect and Energy Dispersion in Semiconductor Detectors,” Rev. Sci. Instrum. 37, 190–194 (1966).

    Article  ADS  Google Scholar 

  74. V. F. Kushniruk, Nguen Tkhi Kha, and Yu. S. Tsyganov, “Investigation of Charge Multiplication in Semiconductor Detectors with 40Ar Ion Beam,” Prib. Tekh. Eksp., No.3, 57–61 (1989).

  75. Yu. Tsyganov, W. Kushniruk, and A. Polyakov, “A Look at the Phenomenon of Charge Multiplication in Silicon Radiation Detector within the Concept of Dynamic Focusing of the Electric Field,” IEEE Trans. Nucl. Sci. 43(5), 2496–2500 (1996).

    Article  ADS  Google Scholar 

  76. E. M. Verbitskaya, V. K. Eremin, N. B. Strokan, et al., Fiz. Tekh. Poluprovodn. (S.-Peterburg) 24(8), 1388 (1987) [in Russian].

    Google Scholar 

  77. Yu. S. Tsyganov, “Relaxation of Nonequilibrium Conductivity in the Tracks of Ionizing Particles,” Soobshch. OIYaI R15-89-107 (Dubna, 1989) [in Russian].

  78. W. Shockley, “Problems Related to p-n Junctions in Silicon,” Solid-State Electron. 2(1), 35 (1961).

    Article  ADS  Google Scholar 

  79. V. F. Kushniruk and Yu. S. Tsyganov, New Field Effect in Silicon Detectors: Bimodal Charge Multiplication”, in JINR Sci. Report E7-97-206 (Dubna, 1997).

  80. H. M. Heijne, Doctoral Thesis (CERN 83-06, Geneva,1983), pp. 96–97.

  81. V. F. Kushniruk et al. Preprints OIYaI R13-96-36, E13-96-327 (Dubna, 1996).

  82. Yu. S. Tsyganov, “On Some Registration Peculiarities of Implanted Heavy Nuclei,” Soobshch. OIYaI R7-91-565 (Dubna, 1991) [in Russian].

  83. F. J. Walter, IEEE Trans. Nucl. Sci. NS-11(3), 332 (1966).

    Google Scholar 

  84. E. C. Finch, Nucl. Instrum. Methods 121, 431 (1974).

    Article  ADS  Google Scholar 

  85. Yu. S. Tsyganov, in Proceedings of NEC’2011 Symposium, Dubna, Varna, Bulgaria, 2011 (Dubna. 2011), pp. 278–280.

  86. Yu. S. Tsyganov, in Proceeding of MMCP 2011 Conference, Stara Lesna, Slovakia, 2011, Ed. by G. Adam, Jan Busa and M. Hnatic (Springer, ?), pp. 252–257.

  87. Yu. S. Tsyganov, A. N. Polyakov, and A. M. Sukhov, submitted to NPAE 2012 Conference (Kiev, Ukraine, 2012); Yu Tsyganov et al., submitted to PEPAN Lett.

  88. Tsyganov Yu. et al. // To be submitted to PEPAN Lett.

  89. Yu. Ts. Oganessian, et al., submitted to Phys. Rev. Lett, 2012; JINR Commun. E7-2012-58 (Dubna, 2012).

  90. B. N. Gikal, Report presented at the FLNR-GANIL Meeting on New Accelerators Projects (2012).

  91. Yu. S. Tsyganov, Preprint OIYaI No. D7-2005-117 (Dubna, 2005), p. 7.

  92. Yu. P. Gangrskii, B. N. Markov, and V. P. Perelygin, The Registration and Spectrometry of Fission Fragments (Energoizdat, Moscow, 2001), p. 92 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.S. Tsyganov, 2013, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2013, Vol. 44, No. 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsyganov, Y.S. Detection of highly ionizing particles: Nonlinear near-surface phenomena in silicon radiation detectors. Phys. Part. Nuclei 44, 92–114 (2013). https://doi.org/10.1134/S1063779613010061

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779613010061

Keywords

Navigation