Skip to main content
Log in

Classical and quantum discrete dynamical systems

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We study deterministic and quantum dynamics from a constructive “finite” point of view, since the introduction of the continuum or other actual infinities in physics poses severe conceptual and technical difficulties, and while all of these concepts are not really needed in physics, which is in fact an empirical science. Particular attention is paid to the symmetry properties of discrete systems. For a consistent description of the symmetries of dynamical systems at different time instants and the symmetries of various parts of such systems, we introduce discrete analogs of gauge connections. These gauge structures are particularly important to describe the quantum behavior. The symmetries govern the fundamental properties of the behavior of dynamical systems. In particular, we can show that the moving soliton-like structures are inevitable in a deterministic (classical) dynamical system, whose symmetry group breaks the set of states into a finite number of orbits of the group. We demonstrate that the quantum behavior is a natural consequence of symmetries of dynamical systems. This behavior is a result of the fundamental inability to trace the identity of indistinguish-able objects during their evolution. Information is only available on invariant statements and values related with such objects. Using general mathematical arguments, any quantum dynamics can be shown to reduce to a sequence of permutations. The quantum interferences occur in the invariant subspaces of permutation representations of the symmetry groups of dynamical systems. The observables can be expressed in terms of permutation invariants. We also show that in order to describe quantum phenomena it is sufficient to use cyclotomic fields—the minimal extensions of natural numbers suitable for quantum mechanics, instead of a non-constructive number system—the field of complex numbers. The finite groups of symmetries play the central role in this review. In physics there is an additional reason for such groups to be of interest. Numerous experiments and observations in particle physics point to the importance of finite groups of relatively low orders in a number of fundamental processes. The origin of these groups has no explanation within presently recognized theories, such as the Standard Model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Altarelli and F. Feruglio, “Discrete Flavor Symmetries and Models of Neutrino Mixing,” Rev. Mod. Phys. 82(3), 2701–2729 (2010).

    Article  ADS  Google Scholar 

  2. G. G. Athanasiu, E. G. Floratos, and S. Nicolis, “Holomorphic Quantization on the Torus and Finite Quantum Mechanics,” J. Phys. A: Math. Gen. 29(21), 6737–6745 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. J. C. Baez, “Spin Foam Models,” Class. Quant. Grav. 15, 1827–1858 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. A. Blum and C. Hagedorn, “The Cabibbo Angle in a Supersymmetric D14 Model,” Nucl. Phys. B 821, 327–353 (2009).

    Article  ADS  MATH  Google Scholar 

  5. P. J. Cameron, Permutation Groups (Cambridge Univ. Press, 1999).

  6. J. H. Conway et al., Atlas of Finite Groups (Clarendon Press, Oxford, 1985).

    MATH  Google Scholar 

  7. J. D. Dixon, B. Mortimer, Permutation Groups (Springer, Berlin, 1996).

    Book  MATH  Google Scholar 

  8. R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals (Mir, Moscow, 1968) [in Russian].

    Google Scholar 

  9. E. G. Floratos and G. K. Leontaris, “Uncertainty Relation and Non-Dispersive States in Finite Quantum Mechanics,” Phys. Lett. B 412(1–2), 35–41 (1997).

    MathSciNet  ADS  Google Scholar 

  10. E. G. Floratos and S. Nicolis, “Non-Commutative Solitons in Finite Quantum Mechanics,” Nucl. Phys. B 119, 947–949 (2003).

    Article  MATH  Google Scholar 

  11. GAP—Groups, Algorithms, Programming—a System for Computational Discrete Algebra. http://www.gap-system.org/

  12. M. Hall, Group Theory (IL, Moscow, 1962) [in Russian].

    Google Scholar 

  13. P. F. Harrison, D. H. Perkins, and W. G. Scott, “Tri-Bimaximal Mixing and the Neutrino Oscillation Data,” Phys. Lett. B 530, 167 (2002) (Preprint arXiv: hep-ph/0202074).

    Article  ADS  Google Scholar 

  14. P. F. Harrison and W. G. Scott, “Permutation Symmetry, Tri-Bimaximal Neutrino Mixing and the S3 Group Characters,” Phys. Lett. B 557, 76 (2003) (Preprint arXiv: hep-ph/0302025).

    Article  MathSciNet  ADS  Google Scholar 

  15. D. F. Holt, B. Eick, and E. A. O’Brien, Handbook of Computational Group Theory (Chapman & Hall/CRC, Boca Raton, London, New York, Washington D.C., 2005).

    Book  MATH  Google Scholar 

  16. G.’ t Hooft, “Dimensional Reduction in Quantum Gravity,” Preprint THU-93/26 (Utrecht, 1993) (Preprint arXiv: gr-qc/9310006).

  17. G.’ t Hooft, “Quantum Gravity as a Dissipative Deterministic System,” Class. Quant. Grav. 16, 3263 (1999).

    Article  ADS  MATH  Google Scholar 

  18. G.’ t Hooft, “The Mathematical Basis for Deterministic Quantum Mechanics”, Preprint ITP-UU-06/14, Preprint SPIN-06/12 (Preprint arXiv: quant-ph/0604008).

  19. H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu, and M. Tanimoto, “Non-Abelian Discrete Symmetries in Particle Physics,” Prog. Theor. Phys. Suppl. 183, 1–173 (2010) (Preprint arXiv: 1003.3552).

    Article  ADS  MATH  Google Scholar 

  20. Th. Juffmann, A. Milic, M. Mullneritsch, et al., “Real-Time Single-Molecule Imaging of Quantum Interference,” Nature Nanotechnology (2012). doi 10.1038/nnano.2012.34

  21. A. A. Kirillov, Elements of Representation Theory (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  22. F. Klein, Vorlesungen über das Ikosaeder (Teubner, Leipzig, 1884), Russian translation: F. Klein, Lectures on Icosahedron and Solution to Fifth-Degree Equations (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  23. Sh. Kobayashi and K. Nomizu, Foundations of Differential Geometry, 1 (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  24. V. V. Kornyak, “On Compatibility of Discrete Relations”, Lect. Notes Comp. Sci. 3718, 272–284 (2005). http://www.springerlink.com/content/4maevdt65e0u5y79/

    Article  MathSciNet  Google Scholar 

  25. V. V. Kornyak, “Discrete Relations on Abstract Simplicial Complexes”, Prog. Comp. Soft. 32(2), 84–89 (2006). http://www.springerlink.com/content/653689132m608294/

    Article  MathSciNet  MATH  Google Scholar 

  26. V. V. Kornyak, “Cellular Automata with Symmetric Local Rules”, Lect. Notes Comp. Sci. 4194, 240–250 (2006). http://www.springerlink.com/content/y145uk08t1x21415/

    Article  MathSciNet  Google Scholar 

  27. V. V. Kornyak, “Symmetries of Discrete Dynamical Systems,” Teor. Fiz. (Izd. Samara State Univ., Samara) 8, 158–169 (2007).

    Google Scholar 

  28. V. V. Kornyak, “Discrete Symmetries and Dynamics of Cellular Automata,” in Computer Algebra Systems in Teaching and Research (Wydawnictwo Akademii Podladkiej, Siedlce, 2007), pp. 192–201.

    Google Scholar 

  29. V. V. Kornyak, “Symmetró Analysis of Discrete Dynamical Systems,” in Computer Algebra and Differential Equations, Acta Academiae Aboensis, Ser. B 67(2), 154–166 (2007).

    MathSciNet  Google Scholar 

  30. V. V. Kornyak, “Symmetric Cellular Automata”, Prog. Comp. Soft. 33(2), 87–93 (2007). http://www.spring-erlink.com/content/k7554t4u7075v2u3/

    Article  MathSciNet  MATH  Google Scholar 

  31. V. V. Kornyak, “Symmetries and Dynamics of Discrete Systems”, Lect. Notes Comp. Sci. 4770, 236–251 (2007). http://www.springerlink.com/content/yn1qu5h4ph465382/

    Article  Google Scholar 

  32. V. V. Kornyak, “Simulation of Nanostructures by Discrete Dynamical Systems,” in Nuclear Physics and Nanotechnologies: Nuclear Physics Aspects of Formation, Study, and Application of Nanostructures, Ed. by A.N. Sisakyan (JINR, Dubna, 2008), pp. 320–338 [in Russian].

    Google Scholar 

  33. V. V. Kornyak, “Gauge Invariance in Discrete Models,” in Computer Algebra Systems in Teaching and Research (Wydawnictwo Akademii Podladkiej, Siedlce, 2009), pp. 39–48.

    Google Scholar 

  34. V. V. Kornyak, “Discrete Dynamical Systems with Symmetries: Computer Analysis,” Prog. Comp. Soft. 34(2), 84–94 (2008). http://www.springer-link.com/content/4g275044677126v3/

    Article  MathSciNet  MATH  Google Scholar 

  35. V. V. Kornyak, “Symmetries, Gauge Invariance, and Quantization in Discrete Models,” Num. Meth. Prog. Adv. Comp. 10, 415–421 (2009). http://nummeth.srcc.msu.ru

    Google Scholar 

  36. V. V. Kornyak, “Discrete Symmetry Analysis of Lattice Systems,” Phys. Part. Nuc. Let. 6(7), 554–558 (2009). http://www.springerlink.com/content/11m3t23476v23v4u/

    Article  Google Scholar 

  37. V. V. Kornyak, “Discrete Dynamics: Gauge Invariance and Quantization,” Lect. Notes Comp. Sci. 5743, 180–194 (2009).

    Article  ADS  Google Scholar 

  38. V. V. Kornyak, “Computer Algebra Study of Structural and Symmetry Properties of Discrete Dynamical Systems,” in Modern Optics and Photonics (World Scientific, 2010), pp. 197–221.

  39. V. V. Kornyak, “Quantization in Discrete Dynamical Systems,” J. Math. Sci. 168(3), 390–397 (2010).http://www.springerlink.com/content/t001t72u8h079116/

    Article  MathSciNet  Google Scholar 

  40. V. V. Kornyak, “Constructive Study of Quantum Behavior,” in Mathematical Modeling in Physics, Civil Engineering, Economics and Finance (Wydawnictwo Collegium Mazovia Innowacyjna Szkola Wyzsza, Siedlce, 2011), pp. 100–114.

    Google Scholar 

  41. V. V. Kornyak, “Structural and Symmetry Analysis of Discrete Dynamical Systems,” in Cellular Automata (Nova Science Publishers, Inc, New York, 2011), pp. 119–163.

    Google Scholar 

  42. V. V. Kornyak, “Finite Quantum Models: Constructive Approach to Description of Quantum Behavior,” Zap. Nauch. Sem. POMI RAN 387, 122–144 (2011).

    MathSciNet  Google Scholar 

  43. V. V. Kornyak, “Computation in Finite Groups and Quantum Physics,” Lect. Notes Comp. Sci. 6885, 263–279 (2011). http://www.springerlink.com/con-tent/u8mr05u2081157u1/

    Article  Google Scholar 

  44. V. V. Kornyak, “Finite Quantum Models: Constructive Approach to Description of Quantum Behavior,” J. Math. Sci. 179(6), 702–713 (2011). http://www.spring-erlink.com/content/y58l2061x5222759/

    Article  MathSciNet  Google Scholar 

  45. V. V. Kornyak, “Modeling of Finite Quantum Systems,” Lect. Notes Comp. Sci. 7125, 79–93 (2012). http://arxiv.org/abs/1107.5675

    Article  Google Scholar 

  46. V. V. Kornyak, “Permutation Interpretation of Quantum Mechanics,” J. Phys. Conf. Ser. 343(1), 1–20 (2012).http://iopscience.iop.org/1742-6596/343/1/012059/

    Google Scholar 

  47. R. Lidl and G. Niederreiter, Finite Fields Vols. 1–2 (Mir, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  48. B. D. McKay, “Practical Graph Isomorphism,” Congressus Numerantium 30, 45–87 (1981). http://cs.anu.edu.au/bdm/nauty/PGI

    MathSciNet  Google Scholar 

  49. P. O. Ludl, “Systematic Analysis of Finite Family Symmetry Groups and Their Application to the Lepton Sector” (Preprint arXiv: 0907.5587, 2009).

  50. W. Magnus, “Residually Finite Groups,” Bull. Amer. Math. Soc. 75(2), 305–316 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  51. A. I. Mal’tsev, “On Isomorphic Representation of Infinite Groups by Matrices,” Mat. Sb. 8(50), 405–422 (1940).

    MATH  Google Scholar 

  52. F. Markopoulou, “The Internal Description of a Causal Set: What the Universe Looks Like from the Inside,” Comm. Math. Phys. 211, 559–583 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. O. Nairz, M. Arndt, and A. Zeilinger, “Quantum Interference Experiments with Large Molecules,” Am. J. Phys 71(4), 319–325 (2003).

    Article  ADS  Google Scholar 

  54. K. Nakamura, et al. (Particle Data Group), “The Review of Particle Physics,” J. Phys. G 37, 075021, 1–1422 (2010).

    Article  Google Scholar 

  55. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  56. R. Oeckl, Discrete Gauge Theory (From Lattices to TQPT) (Imperial College Press, London, 2005).

    Book  Google Scholar 

  57. H. Poincaré, La valeur de la Science (Flammarion, Paris, 1904) Russian translation: A. Poincaré, About science. Ed. by L.S. Pontryagin (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  58. V. V. Prasolov and A. B. Sosinsky, Knots, Links, Braids and 3-Manifolds (MTsNMO, Moscow, 1997) [in Russian].

    MATH  Google Scholar 

  59. J. J. Rotman, An Introduction to the Theory of Groups (Springer, Berlin, 1995).

    Book  MATH  Google Scholar 

  60. N. Seiberg, “Emergent Spacetime,” (Preprint arXiv:hep-th/0601234).

  61. I. R. Shafarevich, Basic Notions of Algebra (RKhD, Izhevsk, 2001).

    Google Scholar 

  62. A. Yu. Smirnov, “Discrete Symmetries and Models of Flavor Mixing”, (Preprint arXiv: 1103.3461).

  63. E. Spanier, Algebraic Topology (Mir, Moscow, 1971) [in Russian].

    MATH  Google Scholar 

  64. R. Zulanke and P. Vintgen, Differential Geometry and Bindles (Mir, Moscow, 1975) [in Russian].

    Google Scholar 

  65. H. Weyl, Group Theory and Quantum Mechanics (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  66. H. Weyl, Ars Combinatoria. Appendix B in Philosophy of Mathematics and Natural Science (Princeton Univ. Press, 1949). Russian translation in Applied Combinatorial Mathematics (Mir, Moscow, 1968).

  67. H. Wielandt, Finite Permutation Groups (Acad. Press, New York and London, 1964).

    MATH  Google Scholar 

  68. S. Wolfram, A New Kind of Science (Wolfram Media, Inc, 2002).

  69. The Wolfram Atlas. http://atlas.wolfram.com/01/01/

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Kornyak, 2013, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2013, Vol. 44, No. 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornyak, V.V. Classical and quantum discrete dynamical systems. Phys. Part. Nuclei 44, 47–91 (2013). https://doi.org/10.1134/S106377961301005X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377961301005X

Keywords

Navigation