Skip to main content
Log in

Electron in the field of flexural vibrations of a membrane: Quantum time, magnetic oscillations, and coherence breaking

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have studied the motion of an electron in a membrane under the influence of flexural vibrations with a correlator that decreases upon an increase in the distance in accordance with the law r. We have conducted a detailed consideration of the case with η < 1/2, in which the perturbation theory is inapplicable, even for an arbitrarily weak interaction. It is shown that, in this case, reciprocal quantum time 1/τ q is proportional to g 1/(1–η) T (2–η)/(2–2η), where g is the electron–phonon interaction constant and T is the temperature. The method developed here is applied for calculating the electron density of states in a magnetic field perpendicular to the membrane. In particular, it is shown that the Landau levels in the regime with ω c τ q » 1 have a Gaussian shape with a width that depends on the magnetic field as B η. In addition, we calculate the time τφ of dephasing of the electron wave function that emerges due to the interaction with flexural phonons for η < 1/2. It has been shown that, in several temperature intervals, quantity 1/τφ can be expressed by various power functions of the electron–phonon interaction constant, temperature, and electron energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).

    Article  ADS  Google Scholar 

  3. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005).

    Article  ADS  Google Scholar 

  4. A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  5. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  6. Statistical Mechanics of Membranes and Surfaces, Ed. by D. Nelson, T. Piran, and S. Weinberg (World Scientific, Singapore, 1989).

  7. N. D. Mermin, Phys. Rev. 176, 250 (1968).

    Article  ADS  Google Scholar 

  8. L. D. Landau and E. M. Lifshitz, Theoretical Physics. Statistical Physics, Part I (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

    Google Scholar 

  9. D. R. Nelson and L. Peliti, J. Phys. 48, 1085 (1987).

    Article  Google Scholar 

  10. M. Paczuski, M. Kardar, and D. R. Nelson, Phys. Rev. Lett. 60, 2638 (1988).

    Article  ADS  Google Scholar 

  11. P. le Doussal and L. Radzihovsky, Phys. Rev. Lett. 69, 1209 (1992).

    Article  ADS  Google Scholar 

  12. J. A. Aronovitz and T. C. Lubensky, Phys. Rev. Lett. 60, 2634 (1988).

    Article  ADS  Google Scholar 

  13. J. Aronovitz, L. Golubovic, and T. C. Lubensky, J. Phys. 50, 609 (1989).

    Article  Google Scholar 

  14. F. David and E. Guitter, Europhys. Lett. 5, 709 (1988).

    Article  ADS  Google Scholar 

  15. E. Guitter, F. David, S. Leibler, and L. Peliti, Phys. Rev. Lett. 61, 2949 (1988).

    Article  ADS  Google Scholar 

  16. E. Guitter, F. David, S. Leibler, and L. Peliti, J. Phys. 50, 1787 (1989).

    Article  Google Scholar 

  17. M. Paczuski and M. Kardar, Phys. Rev. A 39, 6086 (1989).

    Article  ADS  Google Scholar 

  18. L. Radzihovsky and D. R. Nelson, Phys. Rev. A 44, 3525 (1991).

    Article  ADS  Google Scholar 

  19. D. R. Nelson and L. Radzihovsky, Europhys. Lett. 16, 79 (1991).

    Article  ADS  Google Scholar 

  20. G. Gompper and D. M. Kroll, Europhys. Lett. 15, 783 (1991).

    Article  ADS  Google Scholar 

  21. L. Radzihovsky and P. le Doussal, J. de Phys. I 2, 599 (1992).

    ADS  Google Scholar 

  22. D. C. Morse, T. C. Lubensky, and G. S. Grest, Phys. Rev. A 45, R2151 (1992).

    Article  ADS  Google Scholar 

  23. P. le Doussal and L. Radzihovsky, Phys. Rev. B 48, 3548 (1993).

    Article  ADS  Google Scholar 

  24. M. J. Bowick, S. M. Catterall, M. Falcioni, G. Thorleifsson, and K. N. Anagnostopoulos, J. Phys. I 6, 1321 (1996).

    Google Scholar 

  25. J.-P. Kownacki and D. Mouhanna, Phys. Rev. E 79, 040101(R) (2009).

    Article  ADS  Google Scholar 

  26. I. V. Gornyi, V. Yu. Kachorovskii, and A. D. Mirlin, Phys. Rev. B 92, 155428 (2015).

    Article  ADS  Google Scholar 

  27. M. I. Katsnelson, Phys. Rev. B 82, 205433 (2010).

    Article  ADS  Google Scholar 

  28. A. Fasolino, J. H. Los, and M. I. Katsnelson, Nature Mater. 6, 858 (2007).

    Article  ADS  Google Scholar 

  29. E. Mariani and F. von Oppen, Phys. Rev. Lett. 100, 076801 (2008).

    Article  ADS  Google Scholar 

  30. F. von Oppen, F. Guinea, and E. Mariani, Phys. Rev. B 80, 075420 (2009).

    Article  ADS  Google Scholar 

  31. E. Mariani and F. von Oppen, Phys. Rev. B 82, 195403 (2010).

    Article  ADS  Google Scholar 

  32. M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, Phys. Rep. 496, 109 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  33. E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, Phys. Rev. Lett. 105, 266601 (2010).

    Article  ADS  Google Scholar 

  34. K. V. Zakharchenko, R. Roldan, A. Fasolino, and M. I. Katsnelson, Phys. Rev. B 82, 125435 (2010).

    Article  ADS  Google Scholar 

  35. R. Roldan, A. Fasolino, K. V. Zakharchenko, and M. I. Katsnelson, Phys. Rev. B 83, 174104 (2011).

    Article  ADS  Google Scholar 

  36. P. San-Jose, J. Gonzalez, and F. Guinea, Phys. Rev. Lett. 106, 045502 (2011).

    Article  ADS  Google Scholar 

  37. H. Ochoa, E. V. Castro, M. I. Katsnelson, and F. Guinea, Phys. Rev. B 83, 235416 (2011).

    Article  ADS  Google Scholar 

  38. I. V. Gornyi, V. Yu. Kachorovskii, and A. D. Mirlin, Phys. Rev. B 86, 165413 (2012).

    Article  ADS  Google Scholar 

  39. K. S. Tikhonov, Wei L. Z. Zhao, and A. M. Finkel’stein, Phys. Rev. Lett. 113, 076601 (2014).

    Article  ADS  Google Scholar 

  40. A. D. Mirlin, E. Altshuler, and P. Wölfle, Ann. Phys. 5, 281 (1996).

    Google Scholar 

  41. D. V. Khveshchenko and P. C. E. Stamp, Phys. Rev. Lett. 71, 2118 (1993).

    Article  ADS  Google Scholar 

  42. D. V. Khveshchenko and P. C. E. Stamp, Phys. Rev. B 49, 5227 (1994).

    Article  ADS  Google Scholar 

  43. B. L. Altshuler, L. B. Ioffe, and A. J. Millis, Phys. Rev. B 50, 14048 (1994).

    Article  ADS  Google Scholar 

  44. Y. B. Kim, A. Furusaki, X.-G. Wen, and P. A. Lee, Phys. Rev. B 50, 17917 (1994).

    Article  ADS  Google Scholar 

  45. D. V. Khveshchenko, Phys. Rev. B 65, 235111 (2002).

    Article  ADS  Google Scholar 

  46. V. I. Smirnov, Course of Higher Mathematics (Nauka, Moscow, 1974), Vol. 4 [in Russian].

    Google Scholar 

  47. P. Delft, A. Its, and I. Krasovsky, Ann. Math. 174, 1243 (2011).

    Article  Google Scholar 

  48. I. A. Dmitriev, A. D. Mirlin, D. G. Polyakov, and M. A. Zudov, Rev. Mod. Phys. 84, 1709 (2012).

    Article  ADS  Google Scholar 

  49. A. G. Aronov, E. Altshuler, A. D. Mirlin, and P. Wölfle, Europhys. Lett. 29, 239 (1995).

    Article  ADS  Google Scholar 

  50. A. G. Aronov, E. Altshuler, A. D. Mirlin, and P. Wölfle, Phys. Rev. B 52, 4708 (1995).

    Article  ADS  Google Scholar 

  51. L. E. Reichl, The Transition to Chaos (Springer, New York, Berlin, Heidelberg, 1992).

    Book  MATH  Google Scholar 

  52. F. Marquardt, J. von Delft, R. A. Smith, and V. Ambegaokar, Phys. Rev. B 76, 195331 (2007).

    Article  ADS  Google Scholar 

  53. W. Eiler, J. Low Temp. Phys. 56, 481 (1984).

    Article  ADS  Google Scholar 

  54. S. Chakravarty and A. Schmid, Phys. Rep. 140, 193 (1983).

    Article  ADS  Google Scholar 

  55. B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitskii, J. Phys. C 15, 7367 (1982).

    Article  ADS  Google Scholar 

  56. E. Abrahams, J. Schmalian, and P. Wölfle, Phys. Rev. B 90, 045105 (2014).

    Article  ADS  Google Scholar 

  57. P. S. Weiβ, B. N. Narozhny, J. Schmalian, and P. Wölfle, arXiv:1507.02603.

  58. V. V. Afonin, Yu. M. Galperin and V. L. Gurevich, Sov. Phys. JETP 61, 1130 (1985).

    Google Scholar 

  59. A. P. Dmitriev and V. Yu. Kachorovskii, Phys. Rev. B 52, 1058 (1995).

    Article  Google Scholar 

  60. T. Grover and M. P. A. Fisher, J. Stat. Mech. P10010 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Dmitriev.

Additional information

Original Russian Text © I.V. Gornyi, A.P. Dmitriev, A.D. Mirlin, I.V. Protopopov, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 150, No. 2, pp. 372–400.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gornyi, I.V., Dmitriev, A.P., Mirlin, A.D. et al. Electron in the field of flexural vibrations of a membrane: Quantum time, magnetic oscillations, and coherence breaking. J. Exp. Theor. Phys. 123, 322–347 (2016). https://doi.org/10.1134/S1063776116060030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116060030

Navigation